
1

Guided Multiview Ray Tracing for Fast
Auralization

Micah Taylor, Anish Chandak, Qi Mo, Christian Lauterbach, Carl Schissler, and Dinesh Manocha,

Abstract—We present a novel method for tuning geometric acoustic simulations based on ray tracing. Our formulation computes
sound propagation paths from source to receiver and exploits the independence of visibility tests and validation tests to
dynamically guide the simulation to high accuracy and performance. Our method makes no assumptions of scene layout and can
account for moving sources, receivers, and geometry. We combine our guidance algorithm with a fast GPU sound propagation
system for interactive simulation. Our implementation efficiently computes early specular paths and first order diffraction with
a multi-view tracing algorithm. We couple our propagation simulation with an audio output system supporting a high order
interpolation scheme that accounts for attenuation, cross-fading, and delay. The resulting system can render acoustic spaces
composed of thousands of triangles interactively.

Index Terms—Sound propagation, ray tracing, parallelization.

F

1 INTRODUCTION

Auditory displays and sound rendering are frequently used
to enhance the sense of immersion in virtual environments
and multimedia applications. Aural cues combine with
visual cues to improve realism and the user’s experience.
One of the challenges in interactive virtual environments is
to perform auralization and visualization at interactive rates,
i.e. 30fps or better. Current graphics hardware and algo-
rithms make it possible to visually render complex scenes
with millions of primitives at interactive rates. On the other
hand, current auralization methods cannot generate realistic
sound effects at interactive rates even in simple dynamic
scenes composed of thousands of primitives.

Given a description of a virtual environment along with
knowledge of sound sources and receiver location, the basic
auralization pipeline consists of two parts: sound propa-
gation and audio processing. The propagation algorithm
computes a spatial acoustic model resulting in impulse
responses (IRs) that encode the delays and attenuation of
sound traveling from the source to the receiver along differ-
ent propagation paths representing transmission, reflection,
and diffraction (see Figure 1). Whenever the source, re-
ceiver, or the objects in the scene move, these propagation
paths must be recomputed at interactive rates. An audio
processing algorithm generates audio signals by convolving
the input audio signals with the IRs. In dynamic scenes,
the propagation paths can change significantly, making
it challenging to produce artifact-free audio rendering at
interactive rates.

There is extensive literature on modeling the propagation
of sound, including reflections and diffraction. Most prior

• M. Taylor, A. Chandak, Q. Mo and D. Manocha are with the Department
of Computer Science, University of North Carolina, Chapel Hill.
E-mail: see http://gamma.cs.unc.edu/Sound/Guided/

• C. Lauterbach is with Google Inc.

work for interactive applications is based on Geometric-
Acoustic (GA) techniques such as image-source methods,
ray-tracing, path-tracing, beam-tracing, ray-frustum tracing,
etc. However, while interactive systems [44] do exist, it is
widely regarded that current GA methods do not provide
enough flexibility and efficiency needed for use in gen-
eral interactive applications [54]. Therefore, current games
precompute and store reverberation filters for a number
of locations [41]. These filters are typically computed
based on occlusion relationships between the sound source
and the receiver or tracing a low number of feeler rays
into the scene. Other applications use dynamic artificial
reverberation filters [28] or other filters to identify the
surrounding geometric primitives and dynamically adjust
the time delays. These techniques cannot compute the early
acoustic response in dynamic scenes with moving objects
and sound sources.

In this paper, we show that by balancing the visibil-
ity and validation costs inherent in GA methods, much
higher performance can be achieved. We present a simple
algorithm to guide visibility and validation cost in GA
simulations for practical use. We use our guidance system
to direct a fast GPU ray tracer for sound propagation. Our
GPU ray tracer uses multi-view ray tracing to compute
multiple sound reflections in parallel. Additionally, a fast
diffraction detection method is used to further enhance
acoustic performance. We show that our system can achieve
interactive performance on complex scenes while maintain-
ing accuracy using a cost guidance algorithm.

The main components of our work include:
1) Guided visibility and validation: We present a novel

algorithm to reduce the cost of the visibility and
validation steps. Using simple algorithms, the cost of
both operations can often be reduced while retaining
an accurate set of sound propagation paths.

2) Multi-viewpoint ray casting: We describe a ray
casting algorithm that performs approximate visible

2

(a) (b) (c)

Fig. 1: Cost reduction: Figures (a) - (c) show how our
algorithm progresses from a dense visibility ray sampling to
a sparse visibility ray sampling. Additionally, our algorithm
reduces the receiver sphere radius to reduce the number
of validation tests performed. Time cost is reduced while
accuracy is maintained.

surface computations from multiple viewpoints in
parallel. We use this to accelerate specular reflection
calculations.

3) Diffraction computation by barycentric coordi-
nates: To enhance our implementation, we have
developed a low cost method of detecting rays near
diffracting edges. Using the barycentric coordinate
of ray intersections, we can create an origin for
diffraction propagation.

4) Interactive auralization: Using the above algo-
rithms, we implemented a GPU based system to
demonstrate the method.

The overall approach is easily coupled with GA simula-
tions built on discrete ray tracing and can be adapted for
other GA methods. Additionally, our algorithm can easily
support moving sources and receivers, as well as moving
objects. In practice, our GPU implementation achieves up
to an order of magnitude performance improvement over
prior interactive GA methods that use multiple CPU cores.

Organization: The rest of the paper is organized as fol-
lows: Section 2 surveys prior work. In section 3, we
present an overview of GA methods and our algorithm.
Section 4 describes the cost function of tracing propagation
simulations and our guidance method. Section 5 details our
GPU based multi-view tracing, while our audio processing
implementation is covered in Section 6. We analyze the
accuracy and performance of our method in Section 7.

2 PREVIOUS WORK

The computation of IRs is the result of solving the wave
equation. However, current numerical methods used to
solve the wave equation have high complexity and are
mainly limited to static scenes. Often, GA methods are used
when interactive performance is desired. In this section, we
briefly survey prior works on interactive auralization that
are based on GA and audio rendering.

2.1 Geometric Acoustics
At a broad level, all GA methods compute an acous-
tic model of the environment with computations based
on ray theory and are mainly valid for high-frequency

sounds. These include image source methods [2], [9] which
compute specular reflection paths by computing virtual or
secondary sources. Ray tracing methods [30], [58], [7],
[50] compute propagation paths by generating rays from
the source or receiver position and following each ray indi-
vidually as they propagate through the environment. Some
geometric propagation algorithms perform object-precision
visibility computation based on beam tracing [24], [33],
BSP trees [36] or conservative frustum tracing [12]. Other
fast algorithms based on approximate ray-frustum tracing
[14] and multipole expansion [21] have been developed.
Work has also been done on adapting GA methods for
use on GPUs [27], [43], [16], [47]. There have also been
advances in propagation of diffuse acoustic reflections [36],
[20].

There has been much work combining GA methods with
diffraction based on the Uniform Theory of Diffraction
(UTD) [29] and Biot-Tolstoy-Medwin (BTM) methods [8].
The BTM method is considered more accurate and can be
formulated for use with finite edges [51]. The UTD is often
used if interactive rates are desired [55], [52], [17], since
even accelerated BTM methods are not fast enough [5].
Some research has focused on interactive systems including
diffraction with diffuse reflections [52] or for game-like
environments [46].

2.2 Ray Count and Receiver Size

In GA simulations using rays, the rays must be somehow
detected at the receiver point. Since intersecting an arbitrary
ray with a point is unlikely, a sphere is often used as a
detector to collect the rays [38]. The size of the sphere
is related to the number of rays collected, as well as the
accuracy of the simulation. A large sphere size can lead
to incorrect sound paths being detected [35]. Different
methods have been developed to select an appropriate
sphere size, usually based on the number of rays traced
or distance between source and receiver [35], [62]. The
methods for selecting an appropriate ray count are based the
assumption that all surfaces are visible to any one source
position [35]. In scenes where most paths occur after at
least one reflection or the scene configuration changes, it is
difficult to reliably predict an appropriate sampling density.

2.3 Audio Processing

Moving sound sources, receivers, and scene objects can
cause variations in the impulse response from source to
receiver and could lead to artifacts in the final audio
output. Several methods have been proposed to reduce
the artifacts in scenes with moving sources and receivers,
including motion prediction [53], simple interpolation and
windowing techniques [60], [45], [49], and imposing re-
strictions on source and receiver motion [52]. Furthermore,
many techniques have been proposed to reduce the runtime
computational cost of 3D audio in scenarios with large
number of sound sources (including virtual sources) based
on clustering [56], [59] and perceptual methods [37].

3

R

SA

SB SB,C

S

B

C

A

Fig. 2: Image source: From a source point S, image
sources are created by reflecting the source point over the
walls. In order to compute the contribution paths between
the source and receiver R using walls B and C, a ray is
first traced to the image-source SB,C. From the intersection
point on wall C, another ray is traced to SB. Finally, a
ray is traced to the source S. If all these ray segments are
unobstructed, a propagation path is computed between S
and R.

3 GEOMETRIC ACOUSTICS
In most geometric acoustic simulations, the largest time
cost is performing sound propagation. The acoustic re-
sponse from propagation depends on source and receiver
position, as well as the layout of the virtual scene. In
dynamic scenes, propagation paths must be recalculated if
any aspect of the scene configuration changes.

In GA methods, the acoustic response is often divided
into three parts: direct, early, and late. Sound that takes a
direct unoccluded path from source to receiver forms the
direct response. The early response formed by sound waves
that travel to the receiver by way of a few (often 4 to 6)
orders of reflection or diffraction. The late response is the
remaining later portion of the response, often hundreds of
reflections.

3.1 Specular reflections
In this paper, we focus on finding the specular reflection
paths that form the early response. With respect to specular
reflections, all GA methods are variations on the image
source method [2]. In the image source method, the first
order of reflection is modeled by creating reflection images
of the source over all of the triangles in the scene. For
each successive order of reflection, these image sources are
likewise reflected. This process creates a tree of the possible
reflection sequences sound can take. We call this a visibility
tree.

Not every reflection sequence in the visibility tree may
represent a valid sound reflection path to a given receiver.
As such, a validation step can test that each sequence in
the tree is occlusion free between the source and receiver.
A standard method to verify that a path is occlusion free is
to trace a ray from the receiver point back to the reflection
images, verifying that the path reflects off the triangles that
caused the original image source reflection. This results in a
set of occlusion free paths between the source and receiver.
We call this step path creation. Figure 2 shows images and
paths for a simple scene.

Most GA simulations are variants of this process: gen-
erating a visibility tree and creating paths from it. In the

visibility stage, the scene is explored with primitives such
as rays, beams, or frusta. Once the visibility of the scene
has been queried, the path creation stage creates a set of
acoustic contribution paths. Using the material properties
in the scene, these contribution paths can be attenuated and
combined into an impulse response that is used by the audio
processing system to output the final audio.

3.2 Diffraction
Diffraction in sound propagation describes the way sound
waves scatter at edges. The scattering can result in the
sound wave propagating behind corners and out of line-of-
sight. Diffraction is an important effect to simulate since
it allows sounds to naturally fade as the source or receiver
moves out of line-of-sight.

When a sound wave encounters an edge, diffraction scat-
tering occurs all around an edge. Simulating this scattering
in GA methods requires complex visibility queries from the
edge and greatly increases the final number of propagation
paths in the scene [10]. To reduce computational cost,
diffraction calculations can be restricted to the shadow re-
gion [55]. The shadow region is the region that is occluded
from direct contribution from the source.

Similar to specular reflection sequences, diffraction se-
quences create entries in the visibility tree that must be
validated to be occlusion free. Once the visibility of the
path sequence has been tested, the path can be attenuated
based on the edge and path properties.

3.3 Our GA algorithm
We focus on efficiently finding the first few specular
reflections of the acoustic response. In addition, we describe
how low order diffraction paths may be found at minimal
cost. All our algorithms are designed to easily scale on
parallel hardware.

We use ray casting to compute the visible triangles from
the source by tracing sample rays distributed randomly
around the source point. These rays intersect the scene
triangles and the hit data is inserted into the visibility tree.
For each ray that strikes a triangle, a reflected ray is emitted
from the intersection points and its resulting hit data is also
inserted into the visibility tree. If the ray hitpoint is near a
diffracting edge on the triangle, a possible diffraction path
exists and the path details are recorded. In our simulation,
diffraction paths are not validated, instead, only the shortest
and most accurate unique diffraction paths are retained.

The use of ray tracing to accelerate image source algo-
rithms is not a new idea [58], but to our knowledge, no
work has been done on adjusting ray tracing algorithms
to suit the needs of GA methods. We use a new multi-
view ray casting algorithm (see Section 5) to group all
the reflection rays together and shoot them in parallel for
visibility computations. These reflection and intersection
computations are performed repeatedly, until the desired
order of reflection is reached.

Once the visibility tree is constructed, we find valid
propagation path sequences in the tree. We model a sphere

4

at the receiver and only visibility rays that intersect the
sphere are validated. The accuracy of this approach is
governed by the sampling density used in the primary
visibility step and the size of the receiver sphere.

In addition to our new ray tracing algorithm, we propose
a method to dynamically select appropriate sample densities
and receiver sphere size during the simulation process.
Section 4 details our approach to minimizing cost while
maximizing accuracy.

4 GUIDED PROPAGATION

In this section we describe a cost function for specular GA
propagation. We then describe our approach to reducing the
number of tests conducted during propagation.

Some GA methods, such as beam tracing, compute a very
accurate, minimal visibility tree. Since the reflection data in
the tree is very detailed, the complete set of valid paths can
be created very quickly [24]. However, generating such an
accurate tree is costly. Other methods, such as conservative
frustum culling [13], compute accurate trees that may be
overly conservative. The visibility tree can be generated
faster, but the path creation time may increase, since some
of the paths will be occluded and must be discarded. This
concept is similar for other GA based methods, leading to
a simple cost function for specular propagation:

T =
n

Â
i=0

Si +
n

Â
i=0

m

Â
j=0

Ri, j

Where T is the total cost of specular propagation, Si is the
cost of generating the visibility tree for source i, and Ri, j is
cost of path creation for source i to receiver j. Each source
requires separate visibility tree and path calculations. It
should be noted that propagation paths are reciprocal when
ignoring source and receiver directivity, so the endpoint
types can be swapped if it minimizes propagation cost.

4.1 Ray traced propagation cost

Sample based visibility methods like ray tracing are not
guaranteed to generate an accurate visibility tree. This is
because some triangles that are visible to the source may
be missed by the samples and incorrectly excluded from
the visibility tree. However, ray tracing is still used in
sound propagation because of its high performance and
ease of implementation. Since our system uses ray based
propagation, we focus our discussion on the cost of ray
traced propagation.

The general form of ray traced propagation is to trace
a distribution of visibility rays from the source into the
scene, reflecting the rays to the desired order of recursion.
A sphere of some radius is set at each receiver location and
some of the visibility rays may hit this detector sphere.
The visibility rays that strike the sphere represent likely
propagation paths and should be validated to be occlusion
free.

(a)

(b)

Fig. 3: Sample-based visibility: Visibility rays are traced
from source S into the scene. Paths that strike receiver R are
then validated. (a) A small receiver requires dense visibility
sampling to find the propagation path. (b) Using a larger
receiver allows sparse sampling resulting in fewer visibility
tests, however more validation tests are need to remove
invalid path sequences.

For ray traced sound propagation systems with visibility
and validation, S and R can then be expanded as:

T =
n

Â
i=0

NiVi +
n

Â
i=0

m

Â
j=0

NiPi, jLi, j

where T is the total time cost of the simulation, Ni is
the number of visibility rays cast for source i, Vi is the
cost of propagating a visibility ray for source i, Pi, j is the
probability that a visibility ray from source i strikes receiver
j and must be validated, and Li, j is the cost of validating
this propagation path.

The cost of visibility and path creation are scene and
position dependent and can be minimized by efficient ray
tracing techniques or reducing the number of tests in the
propagation step. We discuss efficient tracing techniques in
Section 5. To minimize the number of tests, we decouple
visibility and validation and use a guidance algorithm to
minimize the cost of each independently.

4.2 Guidance algorithm
In most simulations, it is desirable to reduce the time
cost T while maintaining simulation accuracy. This can be
accomplished by controlling the terms in the cost equation.
Given a minimum number of propagation paths to be
discovered, there exists some efficient values for N and the
receiver radius (and thus P) that find the specified number
of paths while minimizing T .

Conducting a large number of visibility tests N with a
high probability P of validating each path sequence (by way
of a large receiver size) will likely find the wanted paths,
but with high time cost. If N is reduced, there will be fewer
rays that encode each unique path sequence. Accuracy can
be maintained if the probability of these rays being detected
is increased by increasing receiver size. Similarly, with a
high N, the receiver size can likely be decreased (reducing
P) while still detecting the necessary path sequences (see
Figure 3).

The base cost values of visibility rays V , and of path
validation L, vary vastly based on the underlying algorithms
and implementations. Also, when the source or receiver

5

Fig. 4: Propagation test count: With a goal of finding
90% of the total paths in the scene, an increasing number
of visibility rays are traced and the minimum required size
of the receiver sphere changes accordingly. With sparse
visibility sampling, a large sphere is required, resulting in
many validation tests. With dense sampling, the sphere size
can be reduced. For specific cost values for visibility and
path validation tests, some minimal total cost exists.

move, or objects in the scene move, V and L can change,
altering the total cost function. Indeed, since the optimal
values may change throughout the course of the simulation,
it is difficult to find the best values to reduce the time cost.

Instead of attempting to find the optimal values, our
guidance algorithm seeks to independently minimize the
number of visibility and validation tests used in propaga-
tion. It works by adjusting the number of visibility rays
cast and the size of the detection sphere. These two factors
correspond to N and P, respectively. Figure 4 shows an
example cost function in terms of the minimal number of
tests needed to find a specific percentage of the total paths
in a scene.

Our algorithm monitors the count of unique contribution
paths found during a single simulation frame. The goal on
subsequent frames is to find an equal or greater number of
paths to this maximum recorded path count, while using
a minimal number of visibility and validation tests. The
algorithm achieves this by reducing the number of rays
traced and the size of the detection sphere. If at any time
the path count decreases (i.e. a path is lost), the algorithm
responds by increasing the number of rays and receiver size
until the path is recovered. If the path cannot be recovered
after aggressive adjustment, the lower path count is selected
as the maximum known path count. If at any time the
current path count exceeds the recorded maximum count,
the maximum count is updated to the new higher count.
This allows our method to respond conservatively to scene
changes.

On startup, the algorithm begins by tracing a user spec-
ified number of rays and with a user specified receiver
sphere size. We use 50k rays and a sphere radius of 1

4

Fig. 5: Guiding state machine: This state machine tracks
the number of unique contribution paths found. Solid lines
are followed if the current path count matches the recorded
maximum count, dashed lines are followed if the path count
is less than the recorded maximum. States marked R+ and
S+ increase the ray count and sphere size, while states
marked R� and S� decrease the ray count and sphere size,
respectively. At the Restart state, the maximum paths count
is set to the current count. The (R+,S+) states attempt to
recover lost paths before recording a new count. The main
top and bottom arms focus on reducing rays and receiver
size respectively.

the length of the maximal scene axis in our tests. From this
point, the number of rays and sphere size are reduced to find
local minima of the total cost function without decreasing
accuracy. A small initial number of visibility rays can lead
to sampling errors that are further discussed in Section 7.

Our guiding algorithm is easily represented as a state
machine. Figure 5 shows the details of the state machine.
After each simulation cycle a new state is found and the
propagation parameters are adjusted. This process contin-
uously adjusts the number of rays traced and the size
of the receiver spheres. Each receiver sphere is adjusted
independently; if the state machine enters a state where
sphere size is increased, but no paths have been missed
to a certain receiver, that specific receiver sphere is not
increased. The accuracy and performance of the algorithm
is discussed in Section 7.

5 MULTI-VIEW GPU RAY TRACING

We use a high performance GPU ray tracer to conduct
the visibility and validation tests needed during sound
propagation. To further improve performance, we attempt
to process each specular view in parallel independently
using a multi-view tracing approach. We describe our basic
GPU ray tracer, the multi-view tracing process, and our
diffraction and validation approaches.

5.1 GPU Propagation

We divide the processing work between the host and GPU
device. The host handles all audio processing, while the
GPU device computes the propagation results. Figure 6
shows the overall details. Our propagation algorithm traces
visibility rays through the scene, intersects them with a
receiver sphere, and validates the possible propagation
paths to be occlusion free.

6

Fig. 6: Implementation Overview: All scene processing and propagation takes place on the GPU: hierarchy construction,
visibility computations, specular and edge diffraction. The sound paths computed using GPU processing are returned to
the host for guidance analysis and audio processing. The guidance results are used to direct the next propagation cycle.

For general ray tracing, previous approaches have in-
vestigated efficient methods to implement ray tracing on
massively parallel architectures such as GPUs, which have
a high number of cores as well as wide vector units on each
core. Current methods for GPU-based ray tracing mainly
differ in the choice of acceleration structure such as kd-
trees [64] or BVHs and the parallelization of ray traversal
step on each GPU core. For example, rays can be traced as
a packet similar to CPU SIMD ray tracing [42] and some
recent approaches can evaluate them independently [1], as
more memory is available for local computation on current
GPUs.

We build on the bounding volume hierarchy (BVH) ray
tracing ideas in [34] and implement our multi-view ray
casting system in CUDA. This allows us to render scenes
with dynamic geometry, as the BVH can be refit or rebuilt
as needed. While NVIDIA provides a ray tracing system
[39] for use on CUDA hardware, we use our own fast ray
tracer due to its flexibility.

Rays are bundled into packets that are executed on
each core while scheduling each ray on a lane in the
vector unit. The rays are then traversed through the BVH
and intersected against the triangles. For primary visibility
samples, we use a simple ray tracing kernel that exploits the
common ray sources for efficiency. Reflections are handled
by a secondary kernel which loads the previous hit data
and traces a reflection ray. To decouple the number of
visibility samples from the number of threads allocated
for processing, we iteratively process visibility samples in
small thread blocks until all samples have been traced.
As rays exit the scene, they are removed from the work
queue and no longer processed. The algorithm ends when
no more active samples exist or the maximum recursion
depth is reached in terms of reflections. At any point during
tracing, if the ray coherence is reduced past a user specified
threshold, multi-view tracing is employed.

Once the visibility computations have been performed up
to a specified order of reflection, the visibility data is tested
against the receiver spheres. Each ray is tested against each
receiver sphere for intersection and is marked if it hits the
sphere and needs to be included in the path validation tests.

As a final step, once the receiver intersect tests are
complete, we compute the valid contribution paths to the
receiver. For each valid path, image source and triangle data
is retrieved. A test checks if the line connecting the source
image point to the receiver passes through the associated

triangle. This test immediately discards most invalid paths.
Then, for each receiver, a ray is constructed from the
receiver towards each image point and traced through the
scene. From the resulting hit point, a new ray is traced to
the parent image, continuing back to the initial source point.
If the entire path is unoccluded, there is a contribution.

5.2 Multi-View Tracing
The underlying formulation of the image source method is
such that each reflection path can be evaluated indepen-
dently. When using ray tracing visibility with the image
source method, all visibility and validation tests are also
independent. As such it is possible to evaluate queries in
parallel. For example, if there are multiple sound image
sources, we may perform visibility computations from each
of them in parallel. Our multi-view algorithm exploits
this: in order to achieve high performance, we process all
independent visibility and validation tests simultaneously.

When considering specular reflection rays, it is helpful
to view rays as visibility queries that accelerate the image
source process. From the source point, the ray visibility
query returns the set of triangles visible to the source (sub-
ject to sampling error). From this set of visible triangles,
image sources can be created by reflecting the source point
over each triangle face. New samples can then be generated
on each triangle face, forming a reflection visibility query
with the image point at the ray origin. This process repeats
to the recursion limit.

In our case, it is natural to bundle all the reflected visibil-
ity samples from one origin together in ray packets. Since
the main factor determining performance in our packet
based ray tracer is ray coherence, such bundling allows
efficient use of memory bandwidth and SIMD vector units.
As described in the previous section, primary visibility rays
are easy to group into coherent packets. However, as the
rays are reflected, it is likely that the rays in the packet
will hit different triangles, and thus be reflected in different
directions with different ray origins. As a result, the packets
are less coherent and may require multiple queries to the
BVH, thus wasting computational resources.

On the GPU, each thread block is treated as if it is
running on independent hardware from all other blocks.
Our ray packets are formed with a ray for each thread in
the thread block. When all the rays in a packet share a
common origin, the packet represents a single ray traced
view that can be traced very efficiently. The goal of our

7

(a) (b) (c)

Fig. 7: Multiview tracing: (a) From the source, rays are grouped into packets that can be efficiently processed on the
vector units. (b) However, a single packet may hit multiple surfaces, resulting in reflection packets that are inefficient.
(c) We reorder packets so that each reflection view can be traced efficiently.

Fig. 8: Multiview performance: Multi-view ray tracing
out performs standard ray tracing for scenes (80k triangle
scene shown) with many specular views. The multi-view
timings include the time cost of all necessary sorting and
reordering.

multi-view system is to achieve this as often as possible.
Our system detects when packets become incoherent and
restructures all rays into more efficient packets.

Given the results of visibility ray casting as a list of
triangle IDs, we perform a data-parallel bitonic sort using
the vector unit. Using the list sorted by ID, it is trivial
to find out for each hit or intersection point whether the
ID is a duplicate (i.e. hit by multiple ray samples) by
comparing against its successor. If all IDs are duplicates, all
rays in the packet hit the same triangle and reflection rays
are likely to share the same origin (at the image source)
and direction. Such a packet is likely to be coherent and
efficient. However, if the sort reveals multiple triangle IDs,
the reflection rays will likely not share a common origin,
and are probably incoherent.

After each trace recursion, the coherency test is applied
to each ray packet. The number of packets that are likely to
be incoherent is then recorded. The percent of packets that
are incoherent is compared to a user specified limit (we use
80% in all our tests). If the threshold is exceeded, the ray
packets are reordered into more efficient views (see Figure
7).

This is done by performing a parallel radix sort on
triangle ID across all hit data. The hit and ray data is
reordered according to the sort results. Since each ray’s
index is no longer indicative of its parent ray, an index
table is also created to find parent hit and ray data. As
a result of this view reordering process, our multi-view
tracing algorithm performs high specular reflection orders
faster than standard ray tracing (see Figure 8).

5.3 Diffraction
We use an approximate edge diffraction algorithm based on
the UTD formulation.

Similar to other approaches, only certain edge types
[52] are considered to cause diffraction. We select two
types of edges as diffracting edges: disconnected edges
that are only shared by one triangle and edges shared
by triangles with normals that differ by > 1

8 p radians.
For each diffracting edge, we store the indices of the
triangles that share the edge. This edge data is precomputed
before simulation. As part of the ray casting algorithm,
we compute barycentric coordinates of each intersection
point on the triangle face [6]. These coordinates represent
how far an intersection point in the interior of a triangle
is from the triangle vertices; in the intersection routine,
the barycentric coordinates are used to detect if the ray
hit point lies within the triangle boundaries. We reuse the
barycentric coordinates when detecting if diffraction rays
need to be traced. If a hit point’s barycentric coordinates
show that the hit point is within 10% of a diffracting
edge, as measured along the triangle surface, we consider
the ray close enough to the edge to continue diffraction
propagation. Using the barycentric coordinates of the hit
point, we project the hit point on to the diffracting edge.
This point on the edge becomes the origin from which
diffraction propagation takes place.

Given the barycentric coordinates of the hit point: l1,
l2, l3 and a triangle with edges e1, e2, e3, a diffraction
origin o can be created on e3 from a hit point that hit
near e3 as follows. Figure 9 shows the arrangement visually.

s = l1 +l2
a = l2

s
d = ae3

Rays are then traced from the diffracting origin according
to the UTD: the outgoing diffracting rays have the same
angle relative to the diffracting edge as the incident ray.
However, we only trace diffraction rays in the shadow
region, not the full diffraction cone, as described by the
UTD. The diffracting edge is shared by the triangle that
was hit by the ray and an occluded triangle (possibly the
backface of the hit triangle). These two triangle faces form a
diffracting wedge as describe by the UTD. In order to create

8

Fig. 9: Barycentric diffraction hit points: Using the
barycentric coordinates of a ray hitpoint, a diffraction
origin d can be found on the triangle edge.

Source

(a)

Source

(b)

Fig. 10: Edge Diffraction: (a) Rays near the edge are
detected for resampling. (b) Diffraction samples are cast
through the shadow region, bounded by the adjacent trian-
gle.

diffraction rays for the shadow region, we create a vector
based at the origin that was previously found and with the
incident ray’s direction. This vector is rotated towards the
occluded triangle face, sweeping out only the part of the
diffraction cone that is in the shadow region. Since we
only conduct first order diffraction in our simulation, we
only trace rays that pass near the receiver spheres. This
greatly reduces the required computation. It is also possible
to trace higher order diffraction rays by sampling the swept
surface of the cone, discretizing the region. See Figure 10
for details.

Even low order diffraction can branch rapidly [10].
Since our ray tracer is implemented on a GPU and such
branching would require expensive dynamic allocation and
kernel management, our system only conducts one order of
diffraction. As each ray intersects a triangle, the hit point is
checked for nearness to a diffracting edge. If the hit point is
within 10% of the edge in triangle space, a diffraction ray
is traced to the receiver point. Only diffracting rays where
the incident and outgoing rays differ by < 10� are retained.
These paths are sent back to the host after tracing and the
shortest (i.e., least error) paths are kept for attenuation and
output.

If a diffraction path is found to reach the receiver, the
acoustic signal must be attenuated based on the diffraction
interaction. Our system uses the UTD attenuation function
[29], adjusted for smoothness at the shadow region. This
function gives the band attenuation based on the properties
of the diffracting edge and the ray geometry. We apply
the function for each of the frequency bands that the user
has selected, resulting in appropriate attenuation of high
frequencies when the path is diffracted.

5.4 Path Creation
During the ray tracing visibility step, all visibility informa-
tion is recorded in GPU memory. This data is used in the
path creation stage to determine which paths are occlusion
free between the source and receiver.

When using ray tracing to determine visibility, we rec-
ognize that there will be many visibility rays that record
duplicate sequences of triangle IDs. In the path creation
stage, it would be most efficient to perform a validation
test for unique sequences only, not for each individual vis-
ibility ray. However, it can be difficult to remove duplicate
visibility sequences.

Our initial attempts at efficient path validation removed
duplicate paths by creating visibility hashes for each se-
quence. Visibility rays were sorted by sequence hash, then
the unique visibility sequences were found, and a single
validation ray was cast for each unique sequence. This
resulted in very low cost visibility tests for path creation:
a single ray for each sequence. However, the cost of the
required sorting and scans to arrange the sequences was
very expensive.

Our final path validation method is less elegant, but much
simpler to perform. For each visibility ray, a validation test
is performed. This results in many duplicate validation tests,
but these can be efficiently performed on parallel hardware.
Each path is validated to be occlusion free in reverse, from
receiver to source. Path data is returned to the host, where
duplicate removal takes place.

The visibility ray order is not changed before validation;
this results in the first order of validation reflection rays
being as coherent as the last order of visibility reflection
rays. The directional coherence of the zeroth order of
validation rays is not guaranteed, but all zeroth order
validation rays share the receiver as a common origin.

Unlike specular paths, our diffraction validation is ap-
proximate. Rather than creating each optimally short UTD
path, we select the most optimal path from the unmodified
visibility samples. On the host, the diffraction path are
sorted by a visibility sequence hash. For each unique
diffraction sequence, the shortest path is selected for audio
output. This path has a possible error of < 10� in edge
angle and < 10% error spatially on the triangle surface.

6 AUDIO PROCESSING
Sound propagation from a source to a receiver computes
an impulse response (IR) based on the length of the
propagation paths and attenuation along the path due to
spreading, reflection, diffraction, and medium absorption.
The IR is convolved with the anechoic source audio to
compute the final audio. Such a convolution based audio
processing works well for static scenes, i.e., static sound
sources, receiver, and scene geometry. However, dynamic
and interactive scenes introduce variations in the paths
reaching from a source to a receiver between two consec-
utive simulation frames and can lead to artifacts in final
audio due to the variations in the IR between frames. In
this section, we present our method to process audio in

9

Fig. 11: Interpolation schemes: Different attenuation
schemes applied for attenuation interpolation. Discontinu-
ity in attenuation between two audio frames interpolated
with linear interpolation and Blackman-Harris interpo-
lation. Delay interpolation is performed using a linear
interpolation. Variable fractional delays due to linear delay
interpolation are handled by applying low order Lagrange
fractional delay filter on a supersampled input audio signal
during the audio processing step.

dynamic scenes and to minimize artifacts in final audio
output.

6.1 Dynamic scenes
In many interactive applications, the source and receiver
movements could be quite large. This can lead to sudden
changes in the propagation paths (i.e. delay and attenuation)
from a source to a receiver. New paths may suddenly
appear when a receiver comes out of a shadow region or
due to the movement of scene geometry. Existing paths
may disappear due to occlusion or sampling errors. To
handle such scenarios, we track the paths and interpolate the
changes in the paths to produce artifact-free audio output.
Our approach combines parameter interpolation [60], [45],
[44] and windowing based schemes [49] to reduce the audio
artifacts.

6.2 Parameter Interpolation
In interactive applications, audio is typically processed in
chunks of audio samples, called audio frames. For example,
an audio signal sampled at 48 KHz could be processed at
100 audio frames per second, i.e. each audio frame has
480 samples. Between two such adjacent audio frames the
propagation paths from a source to a receiver may vary,
leading to a jump in attenuation and delay values per sample
at the audio frame boundaries (see Figure 11). We track
propagation paths and interpolate the delay and attenuation
for a path per audio sample to reduce the artifacts due to
changes in the path. To track propagation paths, each path
is assigned a unique identifier.

We perform parameter interpolation of propagation paths
for audio processing to achieve artifact-free final audio.
It is equivalent to computing an IR per sample based on
the parameter interpolation per path. Such an approach is
physically intuitive and different interpolation schemes can
be applied [53], [56]. We treat each path from a source to
a receiver as a parameter and represent it as an equivalent
image source, i.e. delay, attenuation, and direction in 3D

(a) Lagrange Filter Order = 0

(b) Lagrange Filter Order = 3

Fig. 12: Fractional delay: Applying fractional delay filter
and supersampling input signal to get accurate Doppler
effect for a sound source (2 KHz sine wave) moving away
from the receiver at 20 m/s. The sampling rate of the input
audio is 8 KHz. The supersampling factors are 4x and 8x
for left and right figures respectively. Zeroth order and third
order Lagrange filters are applied.

space relative to the receiver. Each image source is treated
as an independent audio source during audio processing.
Thus, changes in the paths are equivalent to changes in the
corresponding image sources.

As an image source changes, its attenuation, delay, or
direction relative to receiver may change. We perform
attenuation interpolation between audio frames by apply-
ing a windowing function (Blackman-Harris) to smoothly
interpolate attenuation at the audio frame boundary. This
interpolation is performed on a per sample basis and leads
to smooth transition across the audio frame boundary. To
interpolate delay, we perform linear interpolation between
audio frames. Linear delay interpolation augmented with
supersampling and low order fractional delay lines work
well to reduce the artifacts due to delay discontinuities
between audio frames (see Section 6.3). Figure 11 shows
interpolated attenuation per sample for an image source
with attenuation discontinuities.

6.3 Variable Fractional Delay

Fractional delay filters have been applied to speech cod-
ing, speech synthesis, sampling rate conversion, and other
related areas [57]. In our application, we apply fractional
delay filters to handle interpolated delays as sources (or
image sources) and receivers move in a virtual environment.
Rounding off the interpolated delays to nearest integer as
sources and receivers move can lead to noticeable artifacts
in the final audio (see Figure 12). Thus, we require efficient
variable fractional delay filter that can provide fidelity and
speed required in virtual environments. A good good survey

10

of FIR and IIR filter design for fractional delay filter is
provided in [32].

We use a Lagrange interpolation filter due to explicit
formulas to a construct fractional delay filter and flat-
frequency response for low-frequencies. Combined with
supersampled input audio signal, we can model fractional
delay accurately. Variable delay can be easily modeled by
using a different filter computed explicitly per audio sam-
ple. To compute an order N Lagrange filter, the traditional
methods [57] require Q(N2) time and Q(1) space. However,
the same computation can be reduced to Q(N) time and
Q(N) space complexity [23]. Many applications requiring
variable fractional delay oversample the input with a high-
order interpolator and use a low-order variable fractional
delay interpolator [61] to avoid computing a high-order
variable delay filter during run time. Wise and Bristow-
Johnson [61] analyze the signal-to-noise-ratio (SNR) for
various low-order polynomial interpolators in the presence
of oversampled input. Thus, for a given SNR requirement,
optimal supersampled input signal and low-order polyno-
mial interpolator can be chosen to minimize computational
and space complexity. Ideally, a highly oversampled input
signal is required (see Figure 12) to achieve 60 dB or more
SNR for a low-order Lagrange interpolation filter, but it
might be possible to use low oversampling to minimize
artifacts in final audio output [45].

7 ANALYSIS

In this section, we analyze the performance of our algo-
rithm, highlight the error sources, and compare it with prior
methods.

7.1 Performance
We have used our algorithms on several different scenarios
and scenes. The complexity of these scenes is similar to
those used in current games with tens of thousands of
triangles for audio processing. We test the performance of
the system on a multi-core PC with NVIDIA GTX 480
GPU and use a single CPU core (2.8 GHz Pentium) for
audio processing. We used some common benchmarks to
evaluate the performance of our system (Figure 13). Results
for static source and receiver positions are shown in Table 1.
We also show the cost of conducting higher order recursion
in Table 2.

In addition to static scenes, we show results with dy-
namic movement in the Music hall scene using a 500 frame
sequence. For this test, we use the coordinates defined in
the round robin III dataset 1. The source and receiver begin
at coordinates S1 and R1, respectively. Over frames 100-
200, the source moves linearly from S1 to S2. Over frames
300-400, the receiver moves linearly from R1 to R2. We
compare our guidance method to other receiver size models.
In each method, r is the predicted receiver radius, N is the
ray count, V is the scene volume, ` is the ray length, and
d is the distance between source and receiver.

1. http://www.ptb.de/en/org/1/16/163/roundrobin/roundrobin.htm

• Lehnert model: This model increases the receiver
radius for rays that travel farther, adjusting the radius
as rays spread out [35].
r = `

q
2p
N

• NORMAL model: Originally a method for predicting
the number of rays needed based on scene volume
[19], [63], this algorithm has been adapted as a receiver
size model [62].
r = 3

q
15V
2pN

• Xiangyang model: This model accounts for the min-
imal sphere receiver size needed for detection and
adjusts the radius based on scene volume [62].
r = log10(V)d

q
4
N

It should be noted that these receiver models are intended
for simulations that include high orders of diffuse reflec-
tions and are not necessarily optimal for low orders of spec-
ular reflections. Each of these receiver models have been
implemented in a parallel efficient manner and integrated
into our simulation. All simulations begin with 50,000
rays. Appendix A shows detailed data for the animation
sequence.

Model #Tri Bounces #Paths PT (ms) AT (ms)
Desert 35k 3R+1D 15 53 3

Indoor scene 1.5k 3R+1D 27 62 5
Music Hall 0.2k 3R 62 23 7

Sibenik 80k 2R 11 90 3
TABLE 1: Performance in static scenes: The top two
represent simple indoor and outdoor scenes. The third one
is a well known acoustic benchmark and the fourth one is
the model of Sibenik Cathedral. The number of reflections
(R) and edge diffraction (D) are given in the second column.
The time spent in computing propagation paths (on GPU)
is shown in the PT column and audio processing (on CPU)
is shown in the AT column. The simulation begins with 50k
visibility samples; we measure the performance after 50
frames.

Model 1R 2R 3R 4R
Desert 30 41 53 57
Sibenik 51 90 153 226

TABLE 2: Performance per recursion: Average perfor-
mance (in ms) of our GPU-based path computation algo-
rithm as a function of number of reflections performed. The
Desert scene also includes edge diffraction. 50k visibility
samples were used.

7.2 Accuracy and Limitations
Overall, our approach is designed to exploit the compu-
tational power of GPUs to perform interactive visibility
queries. The overall goal is accurate auralization, but our
approach can result in the following errors:

1. Visibility errors: The accuracy of the visible sur-
face or secondary image source computation algorithm
is governed by the number of ray samples and relative
configuration of the image sources. Our algorithm can
miss some secondary sources or propagation paths and is

11

(a) (b) (c) (d)

Fig. 13: Benchmarks: The benchmarks used to test the performance of our implementation: (a) Music hall model; (b)
Sibenik cathedral; (c) Indoor scene; (d) desert scene. While the music hall scene is not often used for low order acoustic
simulation, we selected it to show the animation sequence in Appendix A. Sibenik cathedral was selected as a very
challenging visibility test case.

(a) Music Hall

(b) Sibenik Cathedral

Fig. 14: Recursion path count: These figures show the
number of paths found for varying visibility rays. The
receiver size is fixed at 1 meter. As visibility ray count
increases, low triangle count scenes like the Music hall
(a) are quickly saturated. However, in complex scenes
like Sibenik cathedral (b), higher visibility ray counts are
required to explore the scene.

more accurate for the first few orders of reflections and
diffraction. Figure 14 compares the found paths on two
scenes of varying complexity.

2. Limited path count: Our algorithm uses the number
of valid paths found as input to the guiding algorithm. If
the initial visibility sampling is too low, it is possible that
some paths will not be found. Since the guiding algorithm
cannot account for these unknown paths, it cannot increase
sampling density to find them.

3. Diffraction errors: Our formulation is a variation of
the UTD method and its application to finite edges can
result in errors. Moreover, our system only simulates one
order of approximate diffraction paths and it is possible
that we miss some of the diffraction contributions due to

sampling errors. It is also possible that the found paths will
have slight geometric error.

4. Acoustic response errors: The overall GA method
is a high frequency approximation and may not be ap-
plicable to scenes with very small and detailed features.
Furthermore, our system does not model diffuse reflections
or high order specular reflection and diffraction. Other com-
plementary algorithms [4] could allow diffuse responses to
be included with little cost.

5. Sound rendering artifacts: Our approach tends to
reduce audio artifacts, but cannot eliminate them. Since
our rendering algorithm uses the image sources computed
by the propagation algorithm, any inaccuracy in image
source computation affects its performance. In particular,
if a high number of image sources appear or disappear
between successive frames, we may observe artifacts.

The governing factor in the accuracy and performance of
our approach is the number of ray samples that are cast in
a single simulation frame. This directly impacts visibility
accuracy and indirectly affects validation accuracy. As
we use a higher number of visibility samples, errors are
reduced (see Figure 14). This aligns well with the current
technology trends as the performance of future GPUs will
improve in terms of ray tracing throughput [1]. Another
factor that governs the accuracy is the size of the triangles.
Most GA methods are applicable to models where the size
of the features or triangles is comparable (or larger) than the
audible wavelengths. Moreover, as the size of the primitives
increase, it improves the coherence of the multi-viewpoint
ray casting algorithm and makes it possible to trace a higher
number of ray samples per second.

7.3 Comparisons
We compare our system with other general GA methods
and specific rendering systems.
Ray tracing algorithms: Previous ray-shooting based
propagation algorithms [30], [58] trace each ray or ray
packets independently to compute paths from the sources
to the receiver. These methods model the receiver as an
object of some size to determine when a discrete ray is close
enough to the receiver to be considered a valid contribution
path. This can lead to missed contributions, duplicate
contributions (see Figure 3), or statistical errors [35]. Since

12

we can adjust the visibility sampling and detection sphere
size, our method can achieve better performance than prior
ray tracing methods.
Exact GA algorithms: Exact GA algorithms are based
on beam tracing [33] and conservative ray-frustum tracing
[12]. These methods can accurately compute all the specu-
lar reflection and edge diffraction paths. However, frustum
tracing methods [12] can take a 6� 8 seconds on simple
models composed of a few thousand triangles with three
orders of reflections on a single core and beam tracing
algorithms are almost an order of magnitude slower than
frustum tracing.
Ray-frustum tracing: These methods trace frusta and
use a combination of exact intersection tests and discrete
clipping. Overall, their accuracy lies between discrete ray
tracing and beam tracing methods. However, current im-
plementations can compute the propagation paths with
specular reflection and edge diffraction at 2� 3 fps on a
7-core PC. In our benchmarks, our system running on a
single GPU is about an order of magnitude faster than ray-
frustum tracing.
Other systems: ODEON is a popular acoustics software
which can compute specular reflections, diffuse reflections,
and diffraction [15] and is perhaps the most widely used
commercial system for architectural acoustics. ODEON
performs early specular reflections and diffraction using a
combination of ray tracing and image source method [15].
For diffraction, ODEON computes at most one diffraction
path from a source to a receiver. The diffraction impulse
response is computed [40] only when the direct path
between the source and the receiver is obstructed and a
diffraction edge is found around the geometry obstructing
the source-receiver direct path. CATT-Acoustic [11] is
another popular room acoustic software which performs
specular and diffuse reflections using a combination of
image source and ray tracing methods, along with ran-
domized tail-corrected cone tracing [18]. It does not have
support for diffraction computation. RAMSETE [26] is a
GA based prototype acoustic system. It performs indoor
and outdoor sound propagation using pyramid tracing [22].
It can perform specular reflections, diffuse reflections,
and multiple orders of diffraction over free edges. The
diffraction contribution for free edges is computed using
the Kurze-Anderson [31] formula for free edges. It does
not support diffraction for non-free edges. RAVEN at
RWTH Aachen University is a framework for real-time
auralization of virtual environments [48], [36]. It applies
image source method for specular reflections. RAVEN uses
spatial hierarchies to render dynamic scenes with hundreds
of triangles. Additionally, RAVEN supports a simplified
form of diffraction tests. Another prototype system for
real-time auralization is based on beam tracing [25], [56].
It can perform specular reflections and diffraction using
beam tracing. The diffraction calculations are based on
Uniform Theory of Diffraction (UTD) and these systems
can handle multiple orders of diffraction. A beam tree is
constructed in an offline step which limits the system to
either a static source or receiver position. RESound [52]

is also a real-time auralization system. It is based on a
combination of frustum tracing and ray tracing to handle
specular reflections, diffuse reflections, and UTD diffraction
in dynamic scenes.

7.4 Audio Processing
Our interpolation scheme presented in Section 6.2 produces
smooth audio. It could be improved by interpolating image
sources by predicting their new position based on their
current positions and velocities [53]. Additionally, in cases
where the number of image sources (or paths) is large, it
is possible to apply clustering and perceptual acceleration
[56], [37] for efficient audio processing. Currently, our
audio processing step does not interpolate direction of an
image source relative to the receiver but we encode it by
computing delays and attenuation for left and right ears for
3D audio.

8 CONCLUSION AND FUTURE WORK
We have presented a new auralization algorithm for in-
teractive scenes. Our guidance algorithm reduces visibility
and path cost while maintaining accuracy. Moreover, we
exploit the computational power of GPUs to perform the
visibility computations in parallel and achieve significant
performance improvement over prior GA methods for the
same number of contributions. In practice, we are able to
compute most of the contribution paths to the receiver in
game like scenes with thousands of triangles. Overall, we
are able to generate plausible audio rendering in dynamic
game-like scenes at 8� 30 fps on current PCs. Moreover,
our approach aligns well with the current technology trends
and its accuracy and performance would improve with the
increased parallelism available in the GPUs.

There are many avenues for future work. We would like
to extend to scenes with a high number of sound sources
based on clustering methods or perceptual rendering algo-
rithms. Online analysis of the propagation cost coefficients
may allow for improved guidance algorithms. A preprocess
sampling pass could be used select more appropriate initial
sampling and radius values for better guidance. Further-
more, we would like to perform perceptual evaluation of
our system and perform user studies. Since the ray tracing
algorithm can also be used to perform diffuse reflections,
it may be possible to adapt our algorithms for rendering
diffuse scattering effects. During tracing, some form of
dynamic resampling may improve the accuracy of our
algorithm. We also want to investigate the use of multi-
view tracing with other software, such as NVIDIA’s OptiX
2 engine or acoustic precomputation methods [3]. Finally,
we would like to integrate our auralization system with
other interactive applications and evaluate its performance.

REFERENCES
[1] T. Aila and S. Laine. Understanding the efficiency of ray traversal

on gpus. In Proceedings of High-Performance Graphics, pages 145–
149, 2009.

2. http://www.nvidia.com/object/optix.html

13

[2] J. B. Allen and D. A. Berkley. Image method for efficiently
simulating small-room acoustics. The Journal of the Acoustical
Society of America, 65(4):943–950, April 1979.

[3] L. Antani, A. Chandak, L. Savioja, and D. Manocha. In-
teractive sound propagation using compact acoustic transfer
operators. ACM Transactions on Graphics (To appear).
http://www.cs.unc.edu/ lakulish/Papers/2011-tog.pdf.

[4] L. Antani, A. Chandak, M. Taylor, and D. Manocha. Direct-to-
indirect acoustic radiance transfer. IEEE Transactions on Visualiza-
tion and Computer Graphics, 18(2):261 – 269, February 2012.

[5] L. Antani, A. Chankak, M. Taylor, and D. Manocha. Fast geometric
sound propagation with finite edge diffraction. Technical Report
TR10-011, University of North Carolina, Chapel Hill, 2010.

[6] J. Arenberg. Re: Ray/triangle intersection with barycentric coordi-
nates. In E. Haines, editor, Ray Tracing News, volume 1. Novem-
ber 1988. http://tog.acm.org/resources/RTNews/html/rtnews5b.html#
art3.

[7] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen.
Phonon tracing for auralization and visualization of sound. In
Proceedings of IEEE Visualization, pages 151–158, 2005.

[8] M. A. Biot and I. Tolstoy. Formulation of wave propagation
in infinite media by normal coordinates with an application to
diffraction. Journal of the Acoustical Society of America, 29(3):381–
391, March 1957.

[9] J. Borish. Extension to the image model to arbitrary polyhedra. The
Journal of the Acoustical Society of America, 75(6):1827–1836, June
1984.

[10] P. Calamia, B. Markham, and U. P. Svensson. Diffraction culling
for virtual-acoustic simulations. Acta Acustica united with Acustica,
Special Issue on Virtual Acoustics, 94:907–920, 2008.

[11] CATT, Sweden. CATT-Acoustic User Manual, v8.0 edition, 2002.
http://www.catt.se/.

[12] A. Chandak, L. Antani, M. Taylor, and D. Manocha. Fastv: From-
point visibility culling on complex models. Computer Graphics
Forum (Proc. of EGSR), 28(3):1237–1247, 2009.

[13] A. Chandak, L. Antani, M. Taylor, and D. Manocha. Fastv:
From-point visibility culling on complex models. In Eurographics
Symposium on Rendering, 2009.

[14] A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha.
AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propa-
gation. IEEE Transactions on Visualization and Computer Graphics,
14(6):1707–1722, Nov.-Dec. 2008.

[15] C. L. Christensen. ODEON Room Acoustics Program User Manual.
ODEON A/S, Denmark, 10.1 edition, 2009. http://www.odeon.dk/.

[16] B. Cowan and B. Kapralos. Gpu-based real-time acoustical occlusion
modeling. Virtual Real., 14:183–196, September 2010.

[17] B. Cowan, Brent; Kapralos. Gpu-based acoustical diffraction mod-
eling for complex virtual reality and gaming environments. In Audio
Engineering Society Conference: 41st International Conference:
Audio for Games, 2 2011.

[18] B.-I. L. Dalenbäck. Room acoustic prediction based on a unified
treatment of diffuse and specular reflection. The Journal of the
Acoustical Society of America, 100(2):899–909, 1996.

[19] S. M. Dance and B. M. Shield. The effect on prediction accuracy of
reducing the number of rays in a ray tracing model. Inter-Noise94,
3(1):2127–2130, 1994.

[20] J. L. B. C. Diogo Alarcao, David Santos. An auralization system for
real time room acoustics simulation. In Proceedings of Tecniacustica
2009, 2009.

[21] R. Duraiswami, D. N. Zotkin, and N. A. Gumerov. Fast evaluation of
the room transfer function using multipole expansion. IEEE Trans.
Audio, Speech, Language Processing, 15:565–576, 2007.

[22] A. Farina. RAMSETE - a new Pyramid Tracer for medium and large
scale acoustic problems. In Proceedings of EURO-NOISE, 1995.

[23] A. Franck. Efficient Algorithms and Structures for Fractional Delay
Filtering Based on Lagrange Interpolation. J. Audio Eng. Soc.,
56(12):1036–1056, 2008.

[24] T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and
J. West. A beam tracing approach to acoustic modeling for
interactive virtual environments. In Proc. of ACM SIGGRAPH, pages
21–32, 1998.

[25] T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. West,
G. Pingali, P. Min, and A. Ngan. A beam tracing method for
interactive architectural acoustics. Journal of the Acoustical Society
of America, 115(2):739–756, February 2004.

[26] GENESIS Software and Acoustic Consulting, Italy. RAMSETE User
Manual, version 1.0 edition, 1995. http://www.ramsete.com/.

[27] M. Jedrzejewski and K. Marasek. Computation of room acoustics us-
ing programmable video hardware. In K. Wojciechowski, B. Smolka,
H. Palus, R. Kozera, W. Skarbek, and L. Noakes, editors, Computer
Vision and Graphics, volume 32 of Computational Imaging and
Vision, pages 587–592. 2006.

[28] J.-M. Jot. Real-time spatial processing of sounds for music, multime-
dia and interactive human-computer interfaces. Multimedia Systems,
7(1):55–69, 1999.

[29] R. G. Kouyoumjian and P. H. Pathak. A uniform geometrical theory
of diffraction for an edge in a perfectly conducting surface. Proc.
of IEEE, 62:1448–1461, Nov. 1974.

[30] A. Krokstad, S. Strom, and S. Sorsdal. Calculating the acoustical
room response by the use of a ray tracing technique. Journal of
Sound and Vibration, 8(1):118–125, July 1968.

[31] U. J. Kurze. Noise reduction by barriers. The Journal of the
Acoustical Society of America, 55(3):504–518, 1974.

[32] T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting
the unit delay [fir/all pass filters design]. IEEE Signal Processing
Magazine, 13(1):30–60, Jan 1996.

[33] S. Laine, S. Siltanen, T. Lokki, and L. Savioja. Accelerated beam
tracing algorithm. Applied Acoustic, 70(1):172–181, 2009.

[34] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast bvh construction on gpus. In Proc. Eurographics
’09, 2009.

[35] H. Lenhert. Systematic errors of the ray-tracing algoirthm. Applied
Acoustics, 38:207–221, 1993.

[36] T. Lentz, D. Schröder, M. Vorländer, and I. Assenmacher. Virtual re-
ality system with integrated sound field simulation and reproduction.
EURASIP Journal on Advances in Singal Processing, 2007:187–187,
January 2007. Article ID 70540, 19 pages.

[37] T. Moeck, N. Bonneel, N. Tsingos, G. Drettakis, I. Viaud-Delmon,
and D. Alloza. Progressive perceptual audio rendering of complex
scenes. In I3D ’07: Proceedings of the 2007 symposium on
Interactive 3D graphics and games, pages 189–196, New York, NY,
USA, 2007. ACM.

[38] A. M. Ondet and J. L. Barbry. Modeling of sound propagation in
fitted workshops using ray tracing. The Journal of the Acoustical
Society of America, 85(2):787–796, 1989.

[39] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,
and M. Stich. Optix: A general purpose ray tracing engine. ACM
Transactions on Graphics, August 2010.

[40] A. D. Pierce. Diffraction of sound around corners and over
wide barriers. The Journal of the Acoustical Society of America,
55(5):941–955, 1974.

[41] J. Pope, D. Creasey, and A. Chalmers. Realtime room acoustics
using ambisonics. Proc. of the AES 16th Intl. Conf. on Spatial Sound
Reproduction, pages 427–435, 1999.

[42] S. Popov, J. Gnther, H.-P. Seidel, and P. Slusallek. Stackless KD-
Tree Traversal for High Performance GPU Ray Tracing. Computer
Graphics Forum (Proc. EUROGRAPHICS), 26(3):415–424, 2007.

[43] N. Rber, U. Kaminski, and M. Masuch. Ray acoustics using com-
puter graphics technology. In Proceedings of the 10th International
Conference on Digital Audio Effects (DAFx’07), pages 274–279,
2007.

[44] L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen. Creating
interactive virtual acoustic environments. Journal of the Audio
Engineering Society (JAES), 47(9):675–705, September 1999.

[45] L. Savioja, T. Lokki, and J. Huopaniemi. Auralization applying the
parametric room acoustic modeling technique - the diva auralization
system. ICAD, 2002.

[46] C. Schissler and D. Manocha. Gsound: Interactive sound propagation
and rendering for games. Technical report, University of North
Carolina, 2011. http://gamma.cs.unc.edu/GSOUND.

[47] A. Schmitz, T. Rick, T. Karolski, T. Kuhlen, and L. Kobbelt. Efficient
rasterization for outdoor radio wave propagation. IEEE Transactions
on Visualization and Computer Graphics, 17:159–170, February
2011.

[48] D. Schröder and T. Lentz. Real-Time Processing of Image Sources
Using Binary Space Partitioning. Journal of the Audio Engineering
Society (JAES), 54(7/8):604–619, July 2006.

[49] S. Siltanen, T. Lokki, and L. Savioja. Frequency domain acoustic
radiance transfer for real-time auralization. Acta Acustica united
with Acustica, 95:106–117(12), 2009.

[50] P. Svensson. The early history of ray tracing in room acoustics. In
P. Svensson, editor, Reflections on sound: In honour of Professor

14

Emeritus Asbjørn Krokstad. Norwegian University of Science and
Technology, 2008.

[51] U. P. Svensson, R. I. Fred, and J. Vanderkooy. An analytic secondary
source model of edge diffraction impulse responses . Acoustical
Society of America Journal, 106:2331–2344, Nov. 1999.

[52] M. Taylor, A. Chandak, L. Antani, and D. Manocha. Resound:
interactive sound rendering for dynamic virtual environments. In MM
’09: Proceedings of the seventeen ACM international conference on
Multimedia, pages 271–280. ACM, 2009.

[53] N. Tsingos. A versatile software architecture for virtual audio sim-
ulations. In International Conference on Auditory Display (ICAD),
Espoo, Finland, 2001.

[54] N. Tsingos. Pre-computing geometry-based reverberation effects for
games. 35th AES Conference on Audio for Games, 2009.

[55] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling
acoustics in virtual environments using the uniform theory of diffrac-
tion. In SIGGRAPH 2001, Computer Graphics Proceedings, pages
545–552, 2001.

[56] N. Tsingos, E. Gallo, and G. Drettakis. Perceptual audio rendering of
complex virtual environments. ACM Trans. Graph., 23(3):249–258,
2004.

[57] V. Välimäki. Discrete-Time Modeling of Acoustic Tubes Using Frac-
tional Delay Filters. PhD thesis, Helsinki University of Technology,
1995.

[58] M. Vorländer. Simulation of the transient and steady-state sound
propagation in rooms using a new combined ray-tracing/image-
source algorithm. The Journal of the Acoustical Society of America,
86(1):172–178, 1989.

[59] M. Wand and W. Straßer. Multi-resolution sound rendering. In
SPBG’04 Symposium on Point - Based Graphics 2004, pages 3–11,
2004.

[60] E. Wenzel, J. Miller, and J. Abel. A software-based system for
interactive spatial sound synthesis. In International Conference on
Auditory Display (ICAD), Atlanta, GA, April 2000.

[61] D. K. Wise and R. Bristow-Johnson. Performance of Low-Order
Polynomial Interpolators in the Presence of Oversampled Input. In
Audio Engineering Society Convention 107, 9 1999.

[62] Z. Xiangyang, C. Ke’an, and S. Jincai. On the accuracy of the ray-
tracing algorithms based on various sound receiver models. Applied
Acoustics, 64(4):433 – 441, 2003.

[63] L. N. Yang and B. M. Shield. Development of a ray tracing computer
model for the prediction of the sound field in long enclosures.
Journal of Sound and Vibration, 229(1):133 – 146, 2000.

[64] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree
construction on graphics hardware. In Proc. SIGGRAPH Asia, 2008.

Micah Taylor Micah Taylor received a BS
in computer science from Rose-Hulman In-
stitute of Technology in 2004. He is cur-
rently a Ph.D. student at the University of
North Carolina at Chapel Hill. He has worked
as a research intern at Dolby Laboratories.
His research interests are interactive sound
propagation and real-time ray tracing.

Anish Chandak Anish Chandak received
B.Tech. in Computer Science and Engi-
neering (2006) from the Indian Institute of
Technology (IIT) Bombay, India. He received
M.Sc. and Ph.D. in Computer Science from
the University of North Carolina at Chapel Hill
in 2010 and 2011, respectively. His research
interests include acoustics (sound synthesis,
sound propagation, and 3D audio rendering)
and computer graphics (ray tracing, visibility,
and GPGPU).

Qi Mo Qi Mo received Bachelor’s degree
in Computer Science (2004) from Nanjing
University and Master’s degree (2006) from
the University of Iowa. She is currently a
Ph.D. student in the Computer Science De-
partment at the University of North Carolina
at Chapel Hill. She has worked as a research
intern at NVIDIA. Her research interests in-
clude real-time sound propagation, ray trac-
ing and collision detection.

Christian Lauterbach Christian Lauterbach
is currently working at Google. He received a
PhD in Computer Science from the University
of North Carolina at Chapel Hill under the
advice of Dinesh Manocha, and a Diploma
in Computer Science from the University of
Bremen, Germany.

Carl Schissler Carl Schissler is a Computer
Science B.S. graduate of the University of
North Carolina at Chapel Hill and profes-
sional live sound and recording engineer with
interests in real-time physics, sound simu-
lation and digital signal processing. He has
developed novel techniques for fast sound
propagation and presented these in a paper
at the 41st AES conference for game audio.
Carl is currently developing a commercial
middleware library implementing these algo-

rithms called GSound.

Dinesh Manocha Dinesh Manocha is cur-
rently the Phi Delta Theta/Mason Distin-
guished Professor of Computer Science at
the University of North Carolina at Chapel
Hill. He received his Ph.D. in Computer Sci-
ence at the University of California at Berke-
ley 1992. He has received Junior Faculty
Award, Alfred P. Sloan Fellowship, NSF Ca-
reer Award, Office of Naval Research Young
Investigator Award, Honda Research Initia-
tion Award, Hettleman Prize for Scholarly

Achievement. Along with his students, Manocha has also received 12
best paper & panel awards at the leading conferences on graphics,
geometric modeling, visualization, multimedia and high-performance
computing. He is an ACM and AAAS Fellow and received Dis-
tinguished Alumni Award from IIT Delhi. Manocha has published
more than 300 papers in the leading conferences and journals on
computer graphics, geometric computing, robotics, and scientific
computing and supervised 19 Ph.D. dissertations.

