
iSound: Interactive GPU-based Sound Auralization in Dynamic Scenes

M. Taylor A. Chandak Q. Mo C. Lauterbach C. Schissler D. Manocha
University of North Carolina at Chapel Hill

Abstract
We present an auralization algorithm for interactive virtual environ-
ments with dynamic objects, sources, and listener. Our approach
uses a modified image source method that computes propagation
paths combining direct transmission, specular reflections, and edge
diffractions up to a specified order. We use a novel multi-view
raycasting algorithm for parallel computation of image sources on
GPUs. Rays that intersect near diffracting edges are detected using
barycentric coordinates and further propagated. In order to reduce
the artifacts in audio rendering of dynamic scenes, we use a high or-
der interpolation scheme that takes into account attenuation, cross-
fading, and delay. The resulting system can perform perform au-
ralization at interactive rates on a high-end PC with NVIDIA GTX
280 GPU with 2-3 orders of reflections and 1 order of diffraction.
Overall, our approach can generate plausible sound rendering for
game-like scenes with tens of thousands of triangles. We observe
more than an order of magnitude improvement in computing prop-
agation paths over prior techniques.

1 Introduction
Auditory displays and sound rendering are frequently used to en-
hance the sense of immersion in virtual environments and multime-
dia applications. The aural cues combine with the visual cues to
improve realism and the user’s experience. One of the challenges
in interactive virtual environments is to perform auralization and
visualization at interactive rates, i.e. 30fps or better. Current graph-
ics hardware and algorithms make it possible to render complex
scenes with millions of primitives at interactive rates. On the other
hand, current auralization methods cannot generate realistic sound
effects at interactive rates even in simple dynamic scenes composed
of thousands of primitives.

Given a description of the virtual environment along with the
knowledge of sound sources and listener location, the basic aural-
ization pipeline consists of two parts: sound propagation and audio
processing. The propagation algorithm computes a spatial acous-
tic model using impulse responses (IRs) that encode the delays and
attenuation of sound traveling from the source to the listener along
different propagation paths representing transmissions, reflections,
and diffraction. Whenever the source or the objects in the scene
move, these propagation paths must be recomputed at interactive
rates. The audio processing algorithm generates audio signals by
convolving the input audio signals with the IRs. In dynamic scenes,
the propagation paths can change significantly, making it challeng-
ing to produce artifact-free audio rendering at interactive rates.

There is extensive literature on modeling the propagation of
sound, including reflections and diffraction. Most prior work for
interactive applications is based on Geometric-Acoustic (GA) tech-
niques such as image-source methods, ray-tracing, path-tracing,
beam-tracing, ray-frustum tracing, etc. However, it is widely re-
garded that current GA methods do not provide enough flexibility
and efficiency needed for use in interactive applications [Tsingos
2009]. Therefore, current games precompute and store reverber-
ation filters for a number of locations [Pope et al. 1999]. These
filters are typically computed based on occlusion relationships be-
tween the sound source and the listener or shooting rays. Other
applications tend to use dynamic artificial reverberation filters [Jot
1999] or audio shaders to identify the surrounding geometric prim-

Figure 1: Gamebyro Desert Benchmark: This is an outdoor
scene with 35.5K triangles. It has five fixed sound sources (S1-
S5) and a moving source (S6), whose trajectory is shown in blue.
The listener’s path is shown in green. i-Sound performs 3 orders of
reflection and 1 edge diffraction at 33fps for interactive 3D aural-
ization on a PC with an NVIDIA GTX 280.

itives and dynamically adjust the time delays. These techniques
cannot compute the early acoustic response in dynamic scenes with
moving objects and sound sources.

Main Results: In this paper, we address the problem of auralization
for a single listener at interactive rates, where the goal is to produce
audio signals for a given virtual environment. Our work is based on
recent developments in GA and interactive ray tracing and exploits
the computational capabilities of many-core GPUs for fast sound
propagation. We approximate the image-source method using ray
visibility to compute propagation paths for specular reflection and
edge diffraction. Using a GPU-based parallel visibility algorithm
and new method of ray diffraction, our system runs at interactive
rates on a single PC. The main components of our work include:

1. Detection sphere adjustment: We present a novel algorithm
to reduce the cost of visibility and validation operations. By
varying the size of the detection sphere, visibility costs can be
reduced while maintaining accurate path validation.

2. Diffraction detection by bary-centric coordinates: We
have developed a low cost method of detecting rays near
diffracting edges. Using the bary-centric coordinate of ray
intersections, we can create an origin for diffraction propaga-
tion.

3. Multi-viewpoint ray casting: We describe a new GPU-based
ray casting algorithm that performs approximate visible sur-
face computations from multiple viewpoints in parallel.

4. Smooth audio rendering: We use a scheme that performs
attenuation and delay interpolation per audio sample to reduce
the artifacts in final audio output in dynamic scenes.



Figure 2: i-Sound Overview: All scene processing and propagation takes place on the GPU: hierarchy construction, visibility computations,
specular and edge diffraction. The sound paths computed using GPU processing are returned to the host for audio processing.

The overall approach (i-Sound) performs interactive propagation
and 3D sound rendering in virtual environments that are used in
game-like scenes with tens of thousands of triangles. Moreover,
our method is well suited for dynamic scenes with multiple sources.
In practice, we observe up to an order of magnitude performance
improvement over prior interactive GA methods that use multiple
CPU cores. Our algorithm can generate the early acoustic response
for dynamic environments, which prior methods based on precom-
puted reverberation filters cannot render. We highlight its perfor-
mance on many scenarios and also describe results from our pre-
liminary integration with the Gamebryo game engine.
Organization: The rest of the paper is organized as follows: Sec-
tion 2 surveys prior work. We present our interactive sound prop-
agation algorithm in Section 3. The details of the multi-viewpoint
ray shooting algorithm and acoustic path detection are discussed in
Sections 4 and 5. Section 6 describes the audio processing tech-
niques for dynamic scenes. We analyze various sources of error in
Section 7 and compare their performance with prior methods.

2 Previous work
The computation of propagation paths and IRs reduces to solving
the wave equation. However, current numerical methods used to
solve the wave equation have high complexity and are mainly lim-
ited to static scenes. In this section, we briefly survey prior work on
interactive auralization, that are based on GA and audio rendering.

2.1 Geometric Acoustics
At a broad level, all GA methods compute an acoustic model of the
environment with computations based on ray theory and are mainly
valid for high-frequency sounds. These include image source meth-
ods [Allen and Berkley 1979; Borish 1984]. which compute spec-
ular reflection paths by computing virtual or secondary sources.
Ray tracing methods [Krokstad et al. 1968; Vorländer 1989] com-
pute propagation paths by generating rays from the source or lis-
tener position and follow each of them individually as they prop-
agate through the environment. Accurate geometric propagation
algorithms perform object-precision visibility computation based
on beam tracing [Funkhouser et al. 1998; Laine et al. 2009], BSP
trees [Lentz et al. 2007] or conservative frustum tracing [Chandak
et al. 2009]. Recently, fast algorithms based on ray-frustum tracing
have been presented to compute propagation paths for specular re-
flections and edge diffraction [Chandak et al. 2008]. They can be
combined with ray tracing for diffuse reflections and use late statis-
tical reverberations [Taylor et al. 2009a] to auralize dynamic scenes
at a few frames per second on multi-core processors.

There has been much work combining diffraction with GA meth-
ods based on the Uniform Theory of Diffraction (UTD) [Kouy-
oumjian and Pathak 1974] and Biot-Tolstoy-Medwin (BTM) meth-
ods [Biot and Tolstoy 1957]. The BTM method is considered more
accurate and can be formulated for use with finite edges [Svensson
et al. 1999]. The UTD is used if interactive rates are desired [Tsin-

gos et al. 2001; Taylor et al. 2009a], since even accelerated BTM
methods are not fast enough [?].
2.2 Acoustics Systems
A few commercial and prototype acoustics systems based on geo-
metric acoustics have been developed, which include sound prop-
agation as well audio processing. This includes ODEON [Chris-
tensen 2009], CATT-Acoustic [CAT 2002], RAMSETE [GEN
1995], RAVEN [Schröder and Lentz 2006], beam tracing based sys-
tems [Funkhouser et al. 2004; Tsingos et al. 2004], and RESound
[Taylor et al. 2009b]. All these systems, except for RESound, are
limited to static scenes with moving listeners.
2.3 Audio Processing
Moving sound sources, listener, and scene objects cause variations
in impulse response from a source to a listener and could lead to
artifacts in the final audio output. Several methods have been pro-
posed to reduce the artifacts in scenes with moving sources and lis-
teners, including motion prediction [Tsingos 2001], simple interpo-
lation and windowing techniques [Wenzel et al. 2000; Savioja et al.
2002; Siltanen et al. 2009], and imposing restrictions on source
and listener motion [Taylor et al. 2009a]. Furthermore, many tech-
niques have been proposed to reduce the runtime computational
cost of 3D audio in scenarios with large number of sound sources
(including virtual sources) based on clustering [Tsingos et al. 2004;
Wand and Straßer 2004] and perceptual methods [Moeck et al.
2007].

3 Interactive Sound Propagation
In this section, we present our sound propagation algorithm that
computes the propagation paths from the sources to the listener
based on direct transmission, specular reflections and edge diffrac-
tion (see Fig. 2). We assume that the scene is represented using
triangles and we use a bounding volume hierarchy to accelerate the
intersection tests for ray casting. For dynamic scenes, the hierarchy
is updated using refitting methods. At every frame, we are given
the new position of each source and the listener.
Image-Source Methods: Our formulation for computing the prop-
agation paths is based on image source methods, which reflects
each source point over all triangles in the scene [Allen and Berkley
1979]. In fact, most of the prior GA algorithms either implicitly or
explicitly perform visibility computations to accelerate the perfor-
mance. We use discrete visibility rays to sample the environment
and approximate the image source method. In iSound, the visi-
bility samples are reflected off the scene triangles, creating many
secondary viewpoints. For each sample, we check whether the de-
tection sphere is intersected and create a possible contribution path.

The design of i-Sound is governed by two criteria: simplicity
and efficiency. In order to design faster GA methods, we exploit
the computational power of GPUs to perform visibility computa-
tions. Specifically, the rasterization pipeline in the GPUs is opti-
mized to perform image-space visibility queries from a given view-



(a) (b)

Figure 3: Propagation Path Computation: (a) From a source
point S, ray casting is used to find the zeroth order (or direct) vis-
ible set {A, B}. The rays are reflected to compute the first order
visible set that includes {C}. (b) In order to compute the first order
contribution paths between the source and listener L using walls
B and C, a ray is first traced to the image-source SB,C . From
the intersection point on wall C, another ray is traced to SB . Fi-
nally, a ray is traced to the source S. If all these ray segments are
unobstructed, a propagation path is computed between S and L.

(a) (b)

Figure 4: Edge Diffraction: (a) Rays near the edge are de-
tected for resampling. (b) Diffraction samples are cast through the
shadow region, bounded by the adjacent triangle.

point. However, in terms of image source methods, we need to
compute the visible primitives from multiple viewpoints (each rep-
resenting a virtual sound source) simultaneously. We build on re-
cent developments in GPU-based ray tracing and present a new par-
allel algorithm to perform visibility computations for image-source
methods.

3.1 Specular Reflections
Specular reflections can be computed by finding the visible trian-
gles from a source point and reflecting the source point to create
image-points. We use ray casting to compute the visible triangles
from the source by tracing sample rays uniformly around the source
point. These rays intersect the scene triangles and we compute a
zeroth order visible set of triangles. For each triangle in this set,
reflected rays are emitted from the intersection points and used to
compute higher order visible sets. We use a new multi-view ray
casting algorithm (see Section 4) to group all the reflection rays to-
gether and shoot them in parallel for visibility computations. These
reflection and intersection computations are performed repeatedly,
until the desired order of reflection is reached (see Figure 3 (a) ).
The accuracy of this approach is governed by the sampling density
used in the primary visibility step (see Figure 5).

3.2 Edge Diffraction
We use an approximate edge diffraction algorithm based on the
UTD formulation [Kouyoumjian and Pathak 1974]. The underlying
UTD formulation assumes infinite edges and has a lower computa-
tion overhead than the BTM method. Similar to other interactive
approaches, we only simulate diffraction in shadow regions [Tsin-
gos et al. 2001]. The shadow region is the region that is occluded
from direct contribution from the source. Only specific edges [Tay-
lor et al. 2009a] are considered to cause diffraction. We select two
types of edges as diffracting edges: disconnected edges that are
only shared by one triangle and edges shared by triangles with nor-
mals that differ by > 1

8
π radians. For each diffracting edge, we

store the indices of the triangles that share the edge. This edge data
is precomputed before simulation

As part of the ray casting algorithm, we compute barycentric
coordinates of each intersection point on the triangle face. These
coordinates represent how far an intersection point in the interior of
a triangle is from the triangle vertices; in the intersection routine,
the barycentric coordinates are used to detect if the ray hitpoint
lies within the triangle boundaries. We reuse the barycentric coor-
dinates when detecting if diffraction rays need to be traced. If a
hitpoint’s barycentric coordinates show that the hitpoint is within
10% of a diffracting edge, as measured along the triangle surface,
we consider the ray close enough to the edge to continue diffraction
propagation. Using the barycentric coordinates of the hitpoint, we
project the hitpoint onto the diffracting edge. This point on the edge
becomes the origin from which diffraction propagation takes place.
Given:

The barycentric coordinates of the hitpoint: λ1, λ2, λ3

Triangle with edges e1, e2, e3

A hitpoint can be moved to e3 as follows:
s = λ1 + λ2 α = λ2

s
o = αe2

Rays are traced from the diffracting origin according to the UTD:
the exitant diffracting rays have the same angle relative to the
diffracting edge as the incident ray. However, we only trace diffrac-
tion rays in the shadow region, not the full diffraction cone, as de-
scribed by the UTD. The diffracting edge is shared by the triangle
that was hit by the ray and an occluded triangle (possible the back-
face of the hit triangle). These two triangle faces form a diffracting
wedge as describe by the UTD. In order to create diffraction rays for
the shadow region, we create a vector based at the origin that was
previously found and with the incident ray’s direction. This vec-
tor is rotated towards the occluded triangle face, sweeping out only
the part of the diffraction cone that is in the shadow region. Rays
are then sampled on the surface of the cone, discretizing the region.
The larger the region, the more rays are traced. These diffraction
rays are then traced through the scene and reflected as needed.

Even low order diffraction can branch rapidly [?]. Since such
branching would require expensive dynamic allocation and kernel
managment on the GPU, our system only conducts one order of
diffraction.

3.3 Contribution Paths
Most ray casting GA methods use discrete samples both to conduct
visibility tests and to find propagation paths from a source to a lis-
tener modeled as a sphere [Vorländer 1989]. While these paths can
be tested to be valid contribution path, a dense sampling must be
used to avoid missing paths. At the other extreme, it is possible
to build a visibility tree using the data from the visibility samples.
The visibility tree store all possible reflection combinations for a
single source position. Using the listener position, the tree can be
queried for the valid paths valid paths [Chandak et al. 2009]. How-
ever, testing against the visibility tree requires costly ray traversal
queries.

We use the sphere detector model [?] to create a tree of only the
most likely candidate triangles against which we test paths. Visibil-
ity rays are tested against a very large detector region surrounding
the listener (see Figure 3 (a) ). If a ray hits the region, the primitives
encountered on the ray’s path are added to the visibility tree. The
tree is then used to accelerate image-source path tests between the
source and the listener (Figure 3 (b) ). This method allows sparse
visibility sampling, but finds a high number of propagation paths.

Once the visible sets have been computed, contribution paths can
be tested. For each triangle in the visible set, a reflection image-
point is created. Using these image-points, standard ray based path
validation [Allen and Berkley 1979] can be used to compute valid
contribution paths.



(a) (b) (c)

Figure 5: Sample-based visibility: (a) Sparse visibility samples
from source S create a visibility tree which paths are validated
against, but this validation step can be costly. (b) Directly test-
ing against a listener sphere L requires dense sampling to avoid
missing any paths. (c) Our method combines these ideas by us-
ing a large listener, resulting in fewer missed paths, and a smaller
visibility tree.

4 Multi-viewpoint ray casting
The modified image source algorithm presented in Section 3 uses
fast ray visibility tests to compute the specular image sources and
diffracting edges. In practice, visibility tests are the most expensive
component of our propagation algorithm. We use ray casting to
perform point visibility queries and evaluate samples from many
viewpoints in parallel by using a GPU-based ray tracer.

The underlying formulation of the modified image source
method makes it possible to compute the visible primitives from
multiple viewpoints simultaneously. For example, if there are mul-
tiple sound image sources, we may perform visibility computations
from each of them in parallel. After computing the zeroth order vis-
ible set of triangles, we obtain multiple secondary image sources
and need to compute the visible primitives from each source for
higher order reflections or diffraction. In order to achieve inter-
active performance, we exploit parallelism to process the multiple
viewpoints simultaneously.

Ray casting or tracing algorithms can be used to perform point-
visibility queries at a fixed resolution. These queries may originate
from different viewpoints or sources. Ray intersection tests can
also be processed in parallel with no dependencies between separate
queries. Previous approaches have investigated efficient methods to
implement ray tracing on massively parallel architectures such as a
GPU that has a high number of cores as well as wide vector units on
each core. Current methods for GPU-based ray tracing mainly dif-
fer in the choice of acceleration structure such as kd-trees or BVHs
and the parallelization of ray traversal step on each GPU core. For
example, rays can be traced as a packet similar to CPU SIMD ray
tracing [Popov et al. 2007] and some recent approaches can evalu-
ate them independently [Aila and Laine 2009], as more memory is
available for local computation on current GPUs. The main factor
that governs the performance of GPU ray tracers is ray coherence,
since it affects memory bandwidth and SIMD utilization.

Our multi-view visibility computation algorithm uses ray cast-
ing. Each visibility query returns the set of triangles visible from
a given point. Specifically, we assume that the ray samples can be
described by a viewing frustum, defined by the source and some
field of view. We generate ray samples inside the frustum defining
the visibility volume to compute a visible set from that viewpoint.
This can be achieved using ray casting from the source point or
other image sources and record the triangles that intersect the rays.
The main difference between our approach and prior GPU ray trac-
ing methods occurs in terms of 1) how the intersection points are
processed, 2) generation of secondary visibility samples, and 3) or-
ganizing the rays to evaluate those samples in parallel.

4.1 Computing visible sets
After ray casting for each visibility query, we need to compute the
set of visible triangles to generate secondary or higher order visibil-
ity samples. Given the results of ray casting as a list of triangle IDs,

Figure 6: Multiview tracing: As rays are reflected, they are re-
ordered by viewpoint. This creates the coherent ray groups that can
be processed efficiently on GPUs.

Figure 7: Multiview performance: Multiview ray tracing out per-
forms standard ray tracing for many specular views. The multiview
timings include the time cost of all necessary sorting and reorder-
ing.

we perform a data-parallel bitonic sort using the vector unit. Using
the list sorted by ID, it is trivial to find out for each hit or intersec-
tion point whether it is a duplicate (i.e. hit by multiple ray samples)
by comparing against its successor. In order to compute the visi-
ble set, we use a scan operation to compact the list, filtering out all
the duplicate triangles. As a result, we have a list of triangles that
are hit by rays inside this frustum. Note that this list is only local,
i.e. if the same triangle is hit by sample rays from separate queries
(running on a different core) the duplicate may not be detected. We
handle this case as part of propagation path computation.

4.2 GPU-based algorithm
We build on the bounding volume hierarchy (BVH) ray tracing al-
gorithm [Aila and Laine 2009] and implement our multi-view ray-
casting system in CUDA. Rays are scheduled to the vector lanes
and traversed through the BVH and intersected against the triangles
independently. For primary visibility samples, we use a simple ray
tracing kernel that exploits the common ray sources for efficiency.
All the secondary rays are evaluated by a general ray tracing ker-
nel with independent traversal stacks for the rays. To decouple the
number of visibility samples from the number of CUDA threads
used per core, it is possible to distribute the ray samples across
multiple blocks. A separate kernel then gathers the results from



all these blocks and generates the secondary visibility samples as
needed. The algorithm ends when no more active samples exist
or the maximum recursion depth is reached in terms of reflections.
Our tracing algorithm achieves a 20% speedup over standard ray
tracing (see Figure ??).
4.3 Propagation path computation
As a final step, once the visibility computations have been per-
formed up to a specified order of reflections, we compute the con-
tribution paths to the listener. For each triangle, hit points are re-
trieved. Then, for each listener, a ray is constructed from the listener
towards each point. If the path is unoccluded, there is a contribu-
tion. Since we have retained the reflection data for all previous
recursions, the entire path is easily checked to verify that the path
is valid all the way to the source. It is possible that some paths
are computed multiple times (e.g. when the same triangle is found
visible from separate primary samples), we also check all contri-
bution passes separately for duplicates. Since all the paths can be
specified as a sequence of triangle IDs, this is performed via sorting
and testing against the neighboring paths. This avoids counting the
contributions multiple times.

5 Path detection
When tracing discrete rays through a scene, a listener detection
sphere must be used to record rays that contribute to the acoustic
response. The size of this detection sphere is an important con-
sideration when modeling sound propagation using statistical trac-
ing methods. However, if each path is geometrically validated and
a sufficiently large number of visibility rays are traced, then the
sphere size has no influence on the accuracy of the simulation re-
sults. In this section, we show that by varying the size of the de-
tection sphere, we can reduce the number of visibility rays needed,
and thus increase the performance of the simulation.

In all geometrical simulations that compute the pressure re-
sponse in a scene, each possible acoustic path must be validated to
be free of occlusion between the source and receiver. In the brute-
force image source method, this results in validation rays being cast
for every possible sequence of triangle that lie between the source
and listener, up to the desired order of reflection. In a ray tracing
simulation, each ray that strikes the detection sphere represents a
possible acoustic path, and needs to be validated.

The cost of a sound tracing simulation can be represented as:

Stime = NraysCvisibility + PdetectNraysCvalidation

where Stime is the total time cost of the simulation, Nrays

is the number of visibility rays cast, Cvisibility is the cost of
propagating a visibility ray, Pdetect is the probability that a
visibility ray must be validated, and Cvalidation is the cost of
validating an acoustic path.

In simulations that trace discrete rays, validation tests must be
performed on visibility rays that strike the detection sphere. Since
visibility rays that do not intersect the detection sphere do not con-
tribute to the final audio output, it is most productive to only trace
rays that eventually intersect the detection sphere. Without a very
large detection sphere or a priori knowledge of the scene configu-
ration, this is difficult to achieve in general scenes. In many cases,
a significant fraction of visibility rays never intersect the detection
sphere.

In order to minimize the cost of the validation tests, it is ideal to
only need validate rays that represent valid acoustic paths. Unless
the detection sphere is infinitely small, this is difficult to achieve. It
is likely that some visibility rays that intersect the detection sphere,
but are found to be invalid reflection paths.

Since the minimal number of visibility rays and the optimal
size of the detection sphere are position dependent functions of the
scene, we have chosen to retrict ourselves to optimizing only the

(a)

(b)

(c)

Figure 8: Detection sphere sizes: Varying the number of visibility
and validation tests reveals an optimal balance for each scene and
recursion order. In each graph, the number of visibility samples and
detector sphere are adjusted such as always to find 90% of complete
set of contribution paths.

size of the detection sphere. This allows us to have a fixed ray bud-
get, reducing cost of frame setup time. The size of the detection
sphere is chosen to minimize the validation cost in each scene. Fig-
ure 8 shows the results from size optimization in a scene.

For each scene, iSound finds the optimal detection sphere size
using a simple heuristic. Initially, the detection sphere is set to a
very large size. For each frame, the size is reduced until the contri-
bution count decreases from the previous frame. The size the grows
until no new paths are found. This oscillation continues during the
rendering process, allowing the system to adjust to the scene con-
figuration.

6 Audio Processing
Sound propagation from a source to a listener computes an impulse
response (IR) based on the length of the propagation paths and at-
tenuation along the path due to spreading, reflection, diffraction,
and medium absorption. The IR is convolved with anechoic audio
of the source to compute the final audio. Such a convolution based
audio processing works well for static scenes, i.e., static sound
sources, listener, and scene geometry. However, dynamic and in-
teractive scenes introduce variations in the paths reaching from a
source to a listener between two consecutive simulation frames and
can lead to artifacts in final audio due to the variations in the IR
between frames. In this section, we present our algorithm for audio
processing in dynamic scenes and try to minimize artifacts in final
audio output.



6.1 Dynamic scenes
In many interactive applications, the source and listener movements
could be significantly large. This can lead to sudden changes in the
propagation paths (i.e. delay and attenuation) from a source to a
listener. New paths may suddenly appear when a listener comes
out of a shadow region or due to the movement of scene geom-
etry. Existing paths may disappear due to occlusion or sampling
errors. To handle such scenarios, we track the paths and inter-
polate the changes in the paths to produce artifact-free audio out-
put. Our approach combines parameter interpolation [Wenzel et al.
2000; Savioja et al. 2002; Savioja et al. 1999] and windowing based
schemes [Siltanen et al. 2009] to reduce the audio artifacts.

6.2 Parameter Interpolation
In interactive applications, audio is typically processed in chunks
of audio samples, called audio frames. For example, an audio sig-
nal sampled at 48 KHz could be processed at 100 audio frames per
second, i.e. each audio frame has 480 samples. Between two such
adjacent audio frames the propagation paths from a source to a lis-
tener may vary leading to a jump in attenuation and delay values
per sample at the audio frame boundaries (see Figure 9). We track
propagation paths and interpolate the delay and attenuation for a
path per audio sample to reduce the artifacts due to changes in the
path. To track propagation paths, each path is assigned a unique
identifier.

We perform parameter interpolation of propagation paths for au-
dio processing to achieve artifact-free final audio. It is equivalent
to computing an IR per sample based on the parameter interpola-
tion per path. Such an approach is physically intuitive and different
interpolation schemes can be applied [Tsingos 2001; Tsingos et al.
2004]. We treat each path from a source to a listener as a parameter
and represent it as an equivalent image source, i.e. delay, attenua-
tion, and direction in 3D space relative to the listener. Each image
source is treated as an independent audio source during audio pro-
cessing. Thus, changes in the paths are equivalent to changes in the
corresponding image sources.

As an image source changes, its attenuation, delay, or direction
relative to listener may change. We perform attenuation interpo-
lation between audio frames by applying a windowing function
(Blackman-Harris) to smoothly interpolate attenuation at the audio
frame boundary. This interpolation is performed on a per sample
basis and leads to smooth transition across the audio frame bound-
ary. To interpolate delay, we perform linear interpolation between
audio frames. Linear delay interpolation augmented with super-
sampling and low order fractional delay lines work well to reduce
the artifacts due to delay discontinuties between audio frame (see
Section 6.3). Figure 9 shows interpolated attenuation per sample
for an image source with attenuation discontinuties.

6.3 Variable Fractional Delay
Fractional delay filters have been applied to speech coding,
speech synthesis, sampling rate conversion, and other related ar-
eas [Välimäki 1995]. In our application, we apply fractional delay
filters to handle interpolated delays as sources (or image sources)
and listeners move in a virtual environment. Rounding off the in-
terpolated delays to nearest integer as sources and listeners move
can lead to noticeable artifacts in the final audio (see Figure 10).
Thus, we require efficient variable fractional delay filter that can
provide fidelity and speed required in virtual environments. Laakso
et al. [1996] provide a good survey of FIR and IIR filter design for
fractional delay filter.

We use Lagrange interpolation filter due to explicit formulas
to construct fractional delay filter and flat-frequency response for
low-frequencies. Combined with supersampled input audio signal,
we can model fractional delay accurately. Variable delay can be
easily modeled by using a different filter computed explicitly per
audio sample. To compute an order N Lagrange filter, the tra-

Figure 9: Different attenuation schemes applied for attenuation in-
terpolation. Discontinuity in attenuation between two audio frames
interpolated with linear interpolation and Blackman-Harris inter-
polation. Delay interpolation is performed using a linear interpo-
lation. Variable fractional delays due to linear delay interpolation
are handled by apply low order Lagrange fractional delay filter on a
supersampled input audio signal during the audio processing step.

ditional methods [Välimäki 1995] require Θ(N2) time and Θ(1)
space. However, the same computation can be reduced to Θ(N)
time and Θ(N) space complexity [Franck 2008]. Many applica-
tions requiring variable fractional delay oversample the input with a
high-order interpolator and use a low-order variable fractional delay
interpolator [Wise and Bristow-Johnson 1999] to avoid computing a
high-order variable delay filter during run time. Wise and Bristow-
Johnson [Wise and Bristow-Johnson 1999] analyze the signal-to-
noise-ratio (SNR) for various low-order polynomial interpolators in
the presence of oversampled input. Thus, for a given SNR require-
ment, optimal supersampled input signal and low-order polynomial
interpolator can be chosen to minimize computational and space
complexity. Ideally, a highly oversampled input signal is required
(see Figure 10) to achieve 60 dB or more SNR for a low-order La-
grange interpolation filter but it might be possible to use low over-
sampling to minimze artifacts in final audio output [Savioja et al.
2002].

7 Analysis
In this section, we analyze the performance of our algorithm, high-
light the error sources, and compare it with prior methods.
7.1 Performance
We have used our algorithms on different scenarios with moving
sources or objects. The complexity of these scenes is equivalent
to those used in current games with tens of thousands of triangles
for audio processing. It is possible that the games may use more
detailed models for visual rendering. We also add a simple late re-
verberation filter [Taylor et al. 2009a] to complement the IRs com-
puted by our propagation algorithm. We test the performance of the
system on a multi-core PC with NVIDIA GTX 280 GPU, though
we use a single core (2.8 Ghz Pentium) for audio processing. We
obtain ray tracing performance of about 18 − 20 million ray inter-
sections per second on our benchmarks. We used some common
benchmarks to evaluate the performance of our system.

Gamebyro Integration: We have integrated iSound into the
Emergent Gamebryo 1 game engine to demonstrate the effective-
ness of propagation in dynamic scenes used in current games. This
advanced game engine provides animation, physics, visual render-
ing, and audio effects. The engine consists of a set of tools for
game implementation and the focus is primarily on visual render-
ing. However, like most games, the audio rendering is very simple
and only computes the direct contributions from different sources.

In our modification, we have replaced a large section of the en-
gine’s audio pipeline (Figure 12) with our custom pipeline. We

1http://www.emergent.net/en/Gamebryo-LightSpeed/



(a) (b) (c) (d)

Figure 11: Benchmarks: The benchmarks used to test the performance of i-Sound: (a) Small hall model; (b) Sibenik cathedral; (c) Indoor
scene generated using Gamebyro; (d) Gamebryo desert scene.

(a) Lagrange Filter Order = 0

(b) Lagrange Filter Order = 3

Figure 10: Applying fractional delay filter and supersampling in-
put signal to get accurate doppler effect for a sound source (2KHz
sine wave) moving away from the listener at 20 m/s. The sampling
rate of the input audio is 8KHz. The supersampling factors are 4x
and 8x for left and right figures respectively. Zeroth order and third
order Lagrange filters are applied.

demonstrate the performance on two Gamebyro benchmark scenes.
A propagation manager was added to couple the game engine

with our simulation. This manager is responsible for all data com-
munication between the game engine and our sound simulation.

We first begin by extracting the Gamebryo scene graph prior to
running our propagation simulation. This scene graph is used to
build ray tracing acceleration structures for iSound. If the scene
graph changes, updated geometric primitives are sent to iSound to
update the tracing hierarchies. The hierarchies are managed on the
GPU using recent advances in BVH structures on GPUs.

After the initial scene representation is sent, for each Gamebryo
simulation cycle, the propagation manager reads the player posi-
tion and any source positions from the Gamebryo scene graph. The
player position is used as the receiver position in iSound. The prop-
agation simulation then runs, finding acoustic paths between the
player to the sound sources, returning an impulse response specific
the game engine’s scene configuration for that frame.

The resulting impulse response must the be rendered and output
to the user’s speakers. While it is possible to use the Gamebryo
audio rendering pipeline to render the acoustic paths, we use our

(a)

Figure 12: Game engine integration: Our system has been inte-
grated into the widely used Gamebryo game engine.

audio processing engine, designed to provide artifact free audio in
general dynamic scenes. The propagation manager forwards the
data to our rendering engine, and the game loop continues without
using the Gamebryo audio rendering.

Model Tri Bounces Propagation Number Audio (ms)
Count Time(ms) of Paths Processing

Desert 35,534 3R+1D 30 15 3
Indoor scene 1,556 3R+1D 19 27 5
Small Hall 180 3R 16 105 7

Sibenik 79,942 2R 138 16 3

Table 1: Performance of i-Sound on different benchmarks: The
top two benchmarks are from Gamebyro game engine. The Desert
is the outdoor scene shown in Figure 1. The third one is a well
known simple acoustic benchmark and the fourth one is the model
of Sibenik Cathedral. The number of reflections (R) and edge
diffraction (D) are given in the second column. The time spent in
computing propagation paths (on NVIDIA GTX 280 GPU) and au-
dio processing (on CPU) is also shown. 64k visibility samples were
used.

7.2 Accuracy
Overall, our approach is designed to exploit the computational
power of GPUs to perform interactive visibility computations. We
use resampling methods and a modified image source method to en-
sure that most of the contributions to the listener are computed. The
overall goal is plausible auralization, but our approach can result in
the following errors:

1. Visibility errors: The accuracy of the visible surface or sec-
ondary image source computation algorithm is governed by the
number of ray samples and relative configuration of the image
sources. Our algorithm can miss some secondary sources or propa-
gation paths and is more accurate for the first few orders of reflec-
tions and diffraction.

2. Diffraction errors: Our formulation is a variation of the UTD
method and its application to finite edges can result in errors. More-
over, it is possible that we miss some of the diffraction contributions



due to sampling errors.
3. Sound rendering artifacts: Our approach tends to reduce the

artifacts, but cannot eliminate them. Since our rendering algorithm
uses the image sources computed by the propagation algorithm, any
inaccuracy in image source computation affects its performance. In
particular, if a high number of image sources appear or disappear
between successive frames, we may observe more artifacts.

The governing factor in the accuracy and performance of our
approach is the number of ray samples that we can shoot in the
given time frame. As we can use a higher number of samples on
GPUs, we observe no major errors in our benchmarks. This aligns
well with the current technology trends as the performance of fu-
ture GPUs will improve in terms of ray tracing throughput [Aila
and Laine 2009]. Another factor that governs the accuracy, is the
size of the triangles. Most GA methods are applicable to models
where the size of the features or triangles is comparable (or larger)
than the audible wavelengths. Moreover, as the size of the primi-
tives increase, it improves the coherence of the multi-viewpoint ray
casting algorithm and makes it possible to trace a higher number of
ray samples per second.

Model Direct 1R 2R 3R
Desert 4 12 17 30
Sibenik 32 91 138 185

Table 2: Average performance (in ms) of our GPU-based path
computation algorithm as a function of number of reflections per-
formed. The Desert scene also includes edge diffraction. 64k visi-
bility samples were used.

7.3 Comparisons
We compare the i-Sound with other general GA methods and spe-
cific rendering systems.
Ray tracing algorithms: Previous ray-shooting based propagation
algorithms [Krokstad et al. 1968; Vorländer 1989] trace each ray
or ray packets independently to compute paths from the sources to
the listener. As such, no global visibility information is computed
explicitly, and the discrete ray paths are directly used to compute
the contributions at the listener. These methods model the listener
as an object of some size to determine when a discrete ray is close
enough to the listener to be considered a valid contribution path.
These can lead to missed contributions, duplicate contributions (see
Figure 5), or statistical errors [Lenhert 1993]. Since we can adjust
the detection sphere size for maximum performance. much faster
than prior ray tracing methods.
Exact GA algorithms: The exact GA algorithms are based on
beam tracing [Laine et al. 2009] and conservative ray-frustum trac-
ing [Chandak et al. 2009]. These methods can accurately compute
all the specular reflection and edge diffraction paths. However,
FastV [Chandak et al. 2009] can take a 6 − 8 seconds on simple
models composed of a few thousand triangles with three orders of
reflections on a single core and beam tracing algorithms are almost
an order of magnitude slower than FastV.
Ray-frustum tracing: These methods trace frusta and use a com-
bination of exact intersection tests and discrete clipping. Overall,
their accuracy lies between discrete ray tracing and beam tracing
methods. However, current implementations can compute the prop-
agation paths with specular reflection and edge diffraction at 2− 3
fps on a 7-core PC. In our benchmarks, i-Sound running on a single
GPU is about an order of magnitude faster than ray-frustum tracing.
Other systems: ODEON is a popular acoustics software which
can compute specular reflections, diffuse reflections, and diffrac-
tion [Christensen 2009] and is perhaps the most widely used com-
mercial system for architectural acoustics. ODEON performs early
specular reflections and diffraction using a combination of ray trac-
ing and image source method [Christensen 2009]. For diffraction,
ODEON computes at most one diffraction path from a source to

a listener. The diffraction impulse response is computed [Pierce
1974] only when the direct path between the source and the re-
ceiver is obstructed and a diffraction edge is found around the ge-
ometry obstructing the source-receiver direct path. CATT-Acoustic
[CAT 2002] is another popular room acoustic software which per-
forms specular and diffuse reflections using a combination of image
source method, ray tracing method, and randomized tail-corrected
cone tracing [Dalenbäck 1996]. It does not have support for diffrac-
tion computation. RAMSETE [GEN 1995] is a GA based prototype
acoustic system. It performs indoor and outdoor sound propaga-
tion using pyramid tracing [Farina 1995]. It can perform specu-
lar reflections, diffuse reflections, and multiple orders of diffrac-
tion over free edges. The diffraction contribution for free edges
is computed using Kurze-Anderson [Kurze 1974] formula for free
edges. It does not support diffraction for non-free edges. RAVEN
at RWTH Aachen University is a framework for real-time aural-
ization of virtual environments [Schröder and Lentz 2006]. It ap-
plies image source method for specular reflections. Further, spa-
tial hierarchies are used to accelerate image source computation.
To the best of our knowledge, RAVEN does not handle diffraction
or dynamic scenes with moving source and scene geometry. An-
other prototype system for real-time auralization is based on beam
tracing [Funkhouser et al. 2004; Tsingos et al. 2004]. It can per-
form specular reflections and diffraction using beam tracing. The
diffraction calculations are based on Uniform Theory of Diffraction
(UTD) and these systems can handle multiple orders of diffraction.
A beam tree is constructed in an offline step which limits the system
to static source positions. RESound [Taylor et al. 2009b] is also a
real-time auralization system. It is based on a combination of frus-
tum tracing and ray tracing to handle specular reflectons, diffuse
reflections, and diffraction. Multiple orders of diffraction based
on UTD can be handled along with dynamic scenes with moving
source and scene geometry.

7.4 Audio Processing
Our interpolation scheme presented in Section 6.2 produces smooth
audio. It can be improved by in two different ways: (a) interpolation
of image sources could be based on predicting their new position
based on their current positions and velocities [Tsingos 2001] and
(b) if the number of image sources (or paths) is large, it is possible
to apply clustering and perceptual acceleration [Tsingos et al. 2004;
Moeck et al. 2007] for efficient audio processing. Currently, our
audio processing step does not interpolate direction of an image
source relative to the listener but we encode it by computing delays
and attenuation for left and right ears for 3D audio.

7.5 Accuracy of Propagation Paths
We compared the propagation paths and contributions computed
by i-Sound with varying ray density with the accurate object-space
geometric propagation method [Chandak et al. 2009]. The results
are highlighted in Figure 13 and we compare the number of paths
computed after each order of reflections. For the first few orders
of reflections, i-Sound is approaches the accuracy of image-source
methods. Even after two or three reflections, i-Sound is able to
compute 90 − 95% of the propagation paths at interactive rates on
current GPUs.

7.6 Limitations
We have highlighted the main sources of errors in our approach.
In addition, our current system only performs 1st order diffraction
computation and the UTD method may not be accurate for finite-
edges. The overall GA method is only accurate for the first few
orders of reflections and not applicable to scenes with very small
and detailed features. Moreover, our current approximation of late
reverberation is limited to indoor scenes. Furthermore, the system
does not model diffuse reflections. Our resampling algorithm is
based on a heuristic that may not work well for some benchmarks.



(a)

(b)

Figure 13: Path Accuracy: We compare the paths computed using
i-Sound with the paths generated with an accurate image-source
simulation algorithm (FastV) for: (a) Small hall model; (b) Sibenik
Cathedral model. We are able to compute 90% of all the paths
at interactive rates with 128k samples. Moreover, i-Sound is quite
accurate for the first few orders of reflections, finding most of the
second order paths with only 32k samples.

8 Conclusion and future work
We have presented a new auralization algorithm that can handle
dynamic scenes. Our modified image source method decouples the
visibility computation from the actual path contributions. More-
over, we exploit the computational power of GPUs to perform the
visibility computations in parallel and thereby achieve significant
performance improvement over prior GA methods for the same
number of contributions. In practice, we are able to compute most
of the contribution paths to the listener in game like scenes with
thousands of triangles. We also present a novel audio rendering
scheme to reduce the artifacts. Overall, we are able to generate
plausible audio rendering in game-line scenes with dynamic ob-
jects at 20− 30 fps on current PCs. Moreover, our approach aligns
well with the current technology trends and its accuracy and per-
formance would improve the increased parallelism available in the
GPUs.

There are many avenues for future work. We would like to ex-
tend to scenes with a high number of sound sources based on clus-
tering methods or perceptual rendering algorithms. Furthermore,
we would like to perform perceptual evaluation of our system and
perform user studies. The ray tracing algorithm can also be used to
perform diffuse reflections. It may be possible to use other resam-
pling methods to improve the accuracy of our algorithm. Finally,
we would like to integrate our auralization system with other inter-
active applications and evaluate its performance.

9 Acknowledgements
We are grateful to Lauri Savioja for his feedback on an earlier draft
of this paper. Emergent Game Technologies provided us an aca-

demic license of the development kit of Gamebryo. This work was
partially supported by ARO, RDECOM, NSF, and Intel

References
AILA, T., AND LAINE, S. 2009. Understanding the efficiency of ray traversal on gpus.

In Proceedings of High-Performance Graphics, 145–149.

ALLEN, J. B., AND BERKLEY, D. A. 1979. Image method for efficiently simulating
small-room acoustics. The Journal of the Acoustical Society of America 65, 4
(April), 943–950.

BIOT, M. A., AND TOLSTOY, I. 1957. Formulation of wave propagation in infinite
media by normal coordinates with an application to diffraction. Journal of the
Acoustical Society of America 29, 3 (March), 381–391.

BORISH, J. 1984. Extension to the image model to arbitrary polyhedra. The Journal
of the Acoustical Society of America 75, 6 (June), 1827–1836.

CATT. 2002. CATT-Acoustic User Manual, v8.0 ed. Sweden. http://www.catt.se/.

CHANDAK, A., LAUTERBACH, C., TAYLOR, M., REN, Z., AND MANOCHA, D.
2008. AD-Frustum: Adaptive Frustum Tracing for Interactive Sound Propagation.
IEEE Transactions on Visualization and Computer Graphics 14, 6 (Nov.-Dec.),
1707–1722.

CHANDAK, A., ANTANI, L., TAYLOR, M., AND MANOCHA, D. 2009. Fastv: From-
point visibility culling on complex models. Computer Graphics Forum (Proc. of
EGSR) 28, 3, 1237–1247.

CHRISTENSEN, C. L. 2009. ODEON Room Acoustics Program User Manual, 10.1 ed.
ODEON A/S, Denmark. http://www.odeon.dk/.

DALENBÄCK, B.-I. L. 1996. Room acoustic prediction based on a unified treatment
of diffuse and specular reflection. The Journal of the Acoustical Society of America
100, 2, 899–909.

FARINA, A. 1995. RAMSETE - a new Pyramid Tracer for medium and large scale
acoustic problems. In Proceedings of EURO-NOISE.

FRANCK, A. 2008. Efficient Algorithms and Structures for Fractional Delay Filtering
Based on Lagrange Interpolation. J. Audio Eng. Soc. 56, 12, 1036–1056.

FUNKHOUSER, T., CARLBOM, I., ELKO, G., PINGALI, G., SONDHI, M., AND

WEST, J. 1998. A beam tracing approach to acoustic modeling for interactive
virtual environments. In Proc. of ACM SIGGRAPH, 21–32.

FUNKHOUSER, T., TSINGOS, N., CARLBOM, I., ELKO, G., SONDHI, M., WEST,
J., PINGALI, G., MIN, P., AND NGAN, A. 2004. A beam tracing method for
interactive architectural acoustics. Journal of the Acoustical Society of America
115, 2 (February), 739–756.

GENESIS SOFTWARE AND ACOUSTIC CONSULTING. 1995. RAMSETE User Man-
ual, version 1.0 ed. Italy. http://www.ramsete.com/.

JOT, J.-M. 1999. Real-time spatial processing of sounds for music, multimedia and
interactive human-computer interfaces. Multimedia Systems 7, 1, 55–69.

KOUYOUMJIAN, R. G., AND PATHAK, P. H. 1974. A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface. Proc. of IEEE 62 (Nov.),
1448–1461.

KROKSTAD, A., STROM, S., AND SORSDAL, S. 1968. Calculating the acoustical
room response by the use of a ray tracing technique. Journal of Sound and Vibration
8, 1 (July), 118–125.

KURZE, U. J. 1974. Noise reduction by barriers. The Journal of the Acoustical Society
of America 55, 3, 504–518.

LAAKSO, T. I., VALIMAKI, V., KARJALAINEN, M., AND LAINE, U. K. 1996. Split-
ting the unit delay [fir/all pass filters design]. IEEE Signal Processing Magazine
13, 1 (Jan), 30–60.

LAINE, S., SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2009. Accelerated beam
tracing algorithm. Applied Acoustic 70, 1, 172–181.

LENHERT, H. 1993. Systematic errors of the ray-tracing algoirthm. Applied Acoustics
38, 207–221.

LENTZ, T., SCHRODER, D., VORLÄNDER, M., AND ASSENMACHER, I. 2007.
Virtual reality system with integrated sound field simulation and reproduction.
EURASIP Journal on Advances in Singal Processing. Article ID 70540, 19 pages.

MOECK, T., BONNEEL, N., TSINGOS, N., DRETTAKIS, G., VIAUD-DELMON, I.,
AND ALLOZA, D. 2007. Progressive perceptual audio rendering of complex
scenes. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 189–196.



PIERCE, A. D. 1974. Diffraction of sound around corners and over wide barriers. The
Journal of the Acoustical Society of America 55, 5, 941–955.

POPE, J., CREASEY, D., AND CHALMERS, A. 1999. Realtime room acoustics using
ambisonics. Proc. of the AES 16th Intl. Conf. on Spatial Sound Reproduction, 427–
435.

POPOV, S., GNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P. 2007. Stackless
KD-Tree Traversal for High Performance GPU Ray Tracing. Computer Graphics
Forum (Proc. EUROGRAPHICS) 26, 3, 415–424.

SAVIOJA, L., HUOPANIEMI, J., LOKKI, T., AND VÄÄNÄNEN, R. 1999. Creating
interactive virtual acoustic environments. Journal of the Audio Engineering Society
(JAES) 47, 9 (September), 675–705.

SAVIOJA, L., LOKKI, T., AND HUOPANIEMI, J. 2002. Auralization applying the
parametric room acoustic modeling technique - the diva auralization system. ICAD.

SCHRÖDER, D., AND LENTZ, T. 2006. Real-Time Processing of Image Sources
Using Binary Space Partitioning. Journal of the Audio Engineering Society (JAES)
54, 7/8 (July), 604–619.

SILTANEN, S., LOKKI, T., AND SAVIOJA, L. 2009. Frequency domain acoustic
radiance transfer for real-time auralization. Acta Acustica united with Acustica 95,
106–117(12).

SVENSSON, U. P., FRED, R. I., AND VANDERKOOY, J. 1999. An analytic secondary
source model of edge diffraction impulse responses . Acoustical Society of America
Journal 106 (Nov.), 2331–2344.

TAYLOR, M., CHANDAK, A., ANTANI, L., AND MANOCHA, D. 2009. Resound:
interactive sound rendering for dynamic virtual environments. In MM ’09: Pro-
ceedings of the seventeen ACM international conference on Multimedia, ACM,
New York, NY, USA, 271–280.

TAYLOR, M. T., CHANDAK, A., ANTANI, L., AND MANOCHA, D. 2009. Re-
sound: interactive sound rendering for dynamic virtual environments. In MM ’09:
Proceedings of the seventeen ACM international conference on Multimedia, ACM,
New York, NY, USA, 271–280.

TSINGOS, N., FUNKHOUSER, T., NGAN, A., AND CARLBOM, I. 2001. Model-
ing acoustics in virtual environments using the uniform theory of diffraction. In
SIGGRAPH 2001, Computer Graphics Proceedings, 545–552.

TSINGOS, N., GALLO, E., AND DRETTAKIS, G. 2004. Perceptual audio rendering
of complex virtual environments. ACM Trans. Graph. 23, 3, 249–258.

TSINGOS, N. 2001. A versatile software architecture for virtual audio simulations. In
International Conference on Auditory Display (ICAD).

TSINGOS, N. 2009. Pre-computing geometry-based reverberation effects for games.
35th AES Conference on Audio for Games.

VÄLIMÄKI, V. 1995. Discrete-Time Modeling of Acoustic Tubes Using Fractional
Delay Filters. PhD thesis, Helsinki University of Technology.

VORLÄNDER, M. 1989. Simulation of the transient and steady-state sound propa-
gation in rooms using a new combined ray-tracing/image-source algorithm. The
Journal of the Acoustical Society of America 86, 1, 172–178.

WAND, M., AND STRASSER, W. 2004. Multi-resolution sound rendering. In SPBG’04
Symposium on Point - Based Graphics 2004, 3–11.

WENZEL, E., MILLER, J., AND ABEL, J. 2000. A software-based system for in-
teractive spatial sound synthesis. In International Conference on Auditory Display
(ICAD).

WISE, D. K., AND BRISTOW-JOHNSON, R. 1999. Performance of Low-Order Poly-
nomial Interpolators in the Presence of Oversampled Input. In Audio Engineering
Society Convention 107.


