
Homotopy-Preserving Medial Axis Simplification

Avneesh Sud∗

Department of Computer Science

Mark Foskey†

Department of Radiation Oncology

Dinesh Manocha‡

Department of Computer Science

University of North Carolina at Chapel Hill

Abstract

We present a novel algorithm to compute a simplified medial
axis of a polyhedron. Our simplification algorithm tends to
remove unstable features of Blum’s medial axis. Moreover,
our algorithm preserves the topological structure of the orig-
inal medial axis and ensures that the simplified medial axis
has the same homotopy type as Blum’s medial axis. We use
the separation angle formed by connecting a point on the
medial axis to closest points on the boundary as a measure
of the stability of the medial axis at the point. The medial
axis is decomposed into its parts that are the sheets, seams
and junctions. We present a stability measure of each part
of the medial axis based on separation angles and exam-
ine the relation between the stability measures of adjacent
parts. Our simplification algorithm uses iterative pruning
of the parts based on efficient local tests. We have applied
the algorithm to compute a simplified medial axis of com-
plex models with tens of thousands of triangles and complex
topologies.

Keywords: Medial Axis, Voronoi diagram, homotopy,
simplification, separation angle

1 Introduction

The medial axis of a geometric object is the set of interior
points that have at least two closest points on the boundary
of the object. The medial axis can also be defined as the set
of centers of at least twice tangent maximal balls contained
inside the object. This formulation was originally proposed
by Blum [1967] and many authors have proposed extensions
to this formulation. Given a 3D solid, its medial axis con-
sists of a union of surfaces that provide useful information
about its shape and topology. The medial axis transform
(MAT) consists of all the medial axis points and the distance
to the boundary from each medial point. MAT has appli-
cations in image analysis and computer vision [Pizer et al.
2003], solid modeling [Blanding et al. 1999], mesh genera-
tion and finite element analysis [Sheffer et al. 1998; Suresh
2003], shape simplification [Tam and Heidrich 2003], motion
planning [Foskey et al. 2001], etc.

Given a 3D solid, there are two main issues in the compu-
tation of MAT: algebraic complexity and instability. The
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algebraic complexity arises from the fact that the sheets,
seams and junctions of a medial axis are high degree alge-
braic primitives and it is hard to compute the exact MAT
reliably for complex models. Many techniques have been
proposed in the literature to approximate the medial axis.
At a broad level these techniques either compute the Voronoi
diagram of a point sample on the boundary of the solid or
evaluate the distance field of the primitives on a spatial grid
followed by isosurface extraction.

The instability refers to the property that small modifica-
tions to the boundary of the solid can induce large modi-
fications in its medial axis. Different algorithms have been
proposed to compute a stable subset of the medial axis based
on different geometric criteria. However, current algorithms
are either limited to point datasets or may not preserve the
topology of the medial axis.

Main Results: We present a novel algorithm to compute
a homotopy preserving simplification of the medial axis of
polyhedral models. Our algorithm computes a polygonal
approximation that has the same homotopy type as Blum
medial axis and thereby preserves its topological structure.
Our simplification algorithm is based on the separation angle
[Amenta et al. 2001; Dey and Zhao 2002; Dimitrov et al.
2003] and simplified medial axis [Foskey et al. 2003] and
attempts to remove features on the medial axis for which
the separation angle is below a certain threshold.

We initially compute a connectivity graph that represents
the connectivity of the original medial axis. We present an
iterative algorithm that removes sheets from the medial axis
based on the separation angle criterion without changing the
homotopy type of the medial structure. We maintain a pri-
ority queue of the sheets ordered by the separation angle
and compute a simplification of the medial axis by remov-
ing sheets from the queue that correspond to the unstable
parts. We give rigorous guarantees on the homotopy of the
simplified medial axis. Our simplification algorithm can also
be applied to other medial axis formulations as long as we
are given an approximation with correct homotopy.

Some of the novel results of our work include:

� A homotopy preserving medial axis simplification algo-
rithm applicable to continuous solid representations.

� Relationship between the stability of medial axis junc-
tions and seams to stability of incident sheets using
separation angles.

� Algorithm to compute the stability of a medial axis
sheet using discrete sampling.

We have implemented the algorithm on a PC with 2.4GHz
Pentium IV processor and applied it to complex CAD models
consisting of tens of thousands of triangles. Our algorithm
is able to simplify the medial axis of these models while
preserving the homotopy in a few seconds.

As compared to prior algorithms for medial axis simplifica-
tion, our algorithm offers the following advantages:



�
Polyhedral Models: Our simplification algorithm is
applicable to models with continuous piecewise linear
boundaries, possibly with internal voids.

�
Complex Models: Our algorithm is able to handle
complex models with a high number of boundary prim-
itives and complex topologies.

�
Homotopy Preservation: The simplified medial axis
has the same topological structural as the original me-
dial axis. These properties are important for shape
analysis, motion planning and mesh generation.

�
Efficiency: Our simplification is based on iterative
pruning of the connectivity graph and is computed us-
ing local operations.

Organization: The rest of the paper is organized in the
following manner. We give a brief overview of previous work
in Section 2. We introduce our notation and present back-
ground material in Section 3. We present the formulation
of a topology preserving simplified medial axis in Section
4 and describe our algorithm in Section 5. We prove the
correctness of algorithm in Section 6. We describe its im-
plementation in Section 7 and highlight its performance on
different benchmarks. We analyze its performance and com-
pare it with other approaches in Section 8.

2 Related Work

In this section we give a brief overview of prior work on me-
dial axis computation as well as medial axis simplification.
We make this separation for convenience, but it is important
to realize that the two are often integrated in practice.

2.1 Medial Axis Computation

In this section we focus on methods to generate a (possibly
approximate) medial axis of a figure or object. The algo-
rithms are categorized based on different model representa-
tions.

Image datasets. The problem of MAT computation of a
point dataset has been extensively studied in computer vi-
sion and image processing. In two and three dimensions,
approximations to the medial axis have been computed us-
ing thinning algorithms [Lam et al. 1992; Zhang and Wang
1993]. Many algorithms based on partial differential equa-
tions of front propagation have also been proposed [Kimmel
et al. 1995; Siddiqi et al. 1997]. Pizer et al. [2003] have
generated structures related to the medial axis using filters
which yield high values for points near the medial axis of an
object.

Boundary point samplings. Algorithms for computing
the medial axis of an object from a sample of points on
the boundary typically begin by constructing a Voronoi di-
agram of the point set, after which they use various criteria
to prune faces [Amenta et al. 2001; Dey and Zhao 2002; Naf
et al. 1996; Ogniewicz and Kübler 1995; Sheehy et al. 1995;
Shaham et al. 2004].

Polyhedral Models. Many MAT computation algorithms
have been proposed for polyhedral models based on 3D
tracing of the seam curves [Milenkovic 1993; Reddy and
Turkiyyah 1995; Sherbrooke et al. 1996]. These algorithms

solve a system of algebraic equations to compute the junc-
tion points and the seam curves. Culver et al. [1999] used
exact arithmetic to compute the MAT accurately. Etzion
and Rappoport [2002] used spatial subdivision techniques to
determine connectivity of the MAT and only can guarantee
correctness up to a certain resolution. All these algorithms
have been applied to polyhedral models with a few hundred
triangles. Foskey et al. [2003] used graphics hardware to
generate an image-space representation of the gradient of
the distance field to the boundary, which can be analyzed
to find the medial axis. The gradient field in their method
is actually the same as the velocity field of the propagat-
ing front in the methods of Siddiqi et al. [2002] mentioned
above. Du and Qin [2004] also computed an approximation
of the medial axis using diffusion partial differential equa-
tions solved at a discrete sample of boundary points. Yang
et al. [2004] generated sample points on the boundaries of
maximal spheres, and apply a separation angle criterion (see
below) to select the points approximately on the medial axis.

2.2 Medial Axis Simplification

In this section we give a brief overview of medial axis sim-
plification algorithms. The instability of the medial axis,
and its resulting complexity for objects with boundaries ex-
hibiting fine detail, has been known for some time (see for
instance, Blum and Nagel [1978]). A number of methods
for simplifying the medial axis have been proposed. Pizer et
al. [2003] have presented an extensive survey of methods for
approximating and simplifying the medial axis.

A well known criterion for medial axis simplification is based
on the object angle [Dimitrov et al. 2003]. The separation
angle is twice the object angle at any point on the medial
axis. The underlying methods involve computing subsets
for which the object angle is above a certain threshold. Ma-
landain and Fernández-Vidal [1998] traced the idea, in vary-
ing forms, back to Meyer [1979] and Kruse [1991]. Our sim-
plification algorithm also uses this criterion.

Siddiqi et al. [2002] formulated the detection of gradient
discontinuities in terms of the average gradient flux into a
neighborhood, which has been shown to be closely related
to the object angle [Dimitrov et al. 2003]. Malandain and
Fernández-Vidal [1998] used a criterion combining the ob-
ject angle and the distance between the two points nearest
to the medial axis point. Foskey et al. [2003] detected gradi-
ent discontinuities across adjacent voxels by comparing the
directions of neighboring vectors.

Another class of approaches are based on using a point sam-
pling of the boundary. These algorithms approximate the
medial axis by computing the Voronoi diagram of the set
of points and eliminating some of the Voronoi faces using
different criteria. Amenta et al. [2001] used the distance be-
tween the two points nearest to the medial axis point as a
criterion for medial axis simplification. Dey and Zhao [2002]
combined a similar distance criterion with an object angle
criterion and observed that the two criteria together tend
to eliminate spurious holes. Tam and Heidrich [Tam and
Heidrich 2003] used a volume criterion to remove parts of
the medial axis while preserving the topology. Leymarie
and Kimia [2001] also began with surface point samples, but
their algorithms are based on the differential equations of
front propagation.



2.3 Topological and Smoothness Properties of MAT

Attali, Boissonat, and Edelsbrunner [Attali et al. 2004] have
surveyed different techniques that generate a stable and ho-
motopy preserving medial structure. The homotopy rela-
tionship between an object and its medial axis has been
proven in a particularly general form by Lieutier [2003], who
showed that homotopy preservation holds for any bounded
open subset of R

n. Chazal and Soufflet [2004] presented
smoothness constraints on the boundary of a solid, which
need not be polyhedral, under which the medial axis obeys
certain stability and finiteness conditions. Chazal and Lieu-
tier [2004] have also proven results about stability, and pre-
sented a homotopy preserving medial axis simplification,
however the approach has not been demonstrated on com-
plex models. We discuss some of these simplification meth-
ods in relation to our work in section 8.

3 Notation and Background

In this section, we introduce some of the terminology used in
this paper. We also give a brief overview of the θ-simplified
medial axis (θ-SMA).

3.1 Basic Terminology

The notations are summarized in table 1, and are formally
defined below. In this paper we will consider only polyhedral
solids, which we refer to as an object O. The solid O can
have internal voids. For a point x ∈ O, any point on the
boundary of O that is at least as close to x as any other
will be called a nearest neighbor of x, and the set of nearest
neighbors will be called the neighbor set of x and denoted
NS(x). With a distance function d(),

NS(x) = {y ∈ ∂O | d(x,y) = d(x, ∂O)}.

Then the medial axis of O, denotedM, is defined as the set
of points inside O with at least two nearest neighbors.

The boundary of O can be decomposed disjointly into ver-
tices, open edges, and open faces, which we refer to collec-
tively as sites. Each nearest neighbor of x will be in exactly

Notation Meaning

X c Closure of a set X
X Compliment of X
X ◦ Interior of X
∂X Boundary of X
|X | Cardinality of X
O Polyhedral solid in R

3

pi A face, edge or vertex site on ∂O
ni(x) Normal to a site pi from a point x
NS(x) Set of boundary points closest to x ∈ O
Gov(x) Set of boundary sites closest to x ∈ O
M Medial axis of O
F , fi Set of sheets of M, one sheet of M
E , ei Set of seams of M, one seam of M
V, vi Set of junctions of M, one junction of M
R(fi) Set of rim curves of a sheet fi

S(fi) Set of seam curves of a sheet fi

Table 1: Notation used in the paper

one site, and we define the set of neighboring sites Gov(x)
to be the set of sites containing a nearest neighbor of x:

Gov(x) = {pi | y ∈ pi for some y ∈ NS(x)}.

For each point x ∈M, the sites in the set Gov(x) are called
the governors of the point x. Clearly, |Gov(x)| ≥ 2 for any
point x on the medial axis.

3.2 Medial Axis Point Classification

We define a sheet set to be the set of all medial axis points
governed by a specified pair of sites (or at least having that
pair among their governors), and we define a sheet to be a
connected component of a sheet set. The interior of a sheet
is a smooth surface. A sheet may contain holes, because we
do not require that the boundary of O be connected or have
only simply connected faces. A seam curve, or seam, is a con-
nected component of the intersection of two or more sheets.
The intersection of three or more seams is a junction. This
definition corresponds approximately to those given in [Cul-
ver et al. 1999] and [Sherbrooke et al. 1996]. Finally, for any
subsetM′ ofM, the intersection of a seam with the bound-
ary will be a seam end. The intersection of a sheet with
seam ends removed, and the boundary of M′ will be a rim
set. An example of seam points, junction points, and rim
points is given in figure 1. A similar classification of medial
axis points for any bounded set in R

3 is given in [Giblin and
Kimia 2000].

We make one special proviso about rims and seam ends. In
general, including the case whenM′ =M, the boundary of
M′ will not be contained in M′. In this case, it is possible
that two sheets that do not intersect will have boundaries
that do intersect. If this occurs, their rim curves and seam
ends will be treated as distinct combinatorial entities, since
the goal is to reflect the connectivity properties of M, not
its closure.

Figure 1: Medial axis point classification: (a) Classification
of the points on the medial axis (thin lines) of a simple poly-
hedron (thick lines) (b) A subsetM′ ⊂M is shaded in gray.
A rim point and a seam point on the boundary of the central
sheet are shown.

3.3 Homotopy Equivalence

One of the major goals of our work is to compute a simplifi-
cation of the MAT that is homotopy equivalent to the exact
MAT. The notion of homotopy equivalence between topolog-
ical sets enforces a one-to-one correspondence between con-
nected components, holes, tunnels or cavities and also the



way in which they are related. It has been shown by Lieu-
tier [Lieutier 2003] that any bounded open subset X ⊆ R

n

is homotopy equivalent to its medial axis. Intuitively this
implies that the medial axis and the shape are connected in
the same way.

Formally, two maps f : X → Y and g : X → Y are homotopic
if there exists a continuous family of maps ht : X → Y, for
t ∈ [0, 1], such that h0 = f and h1 = g. Thus, a homotopy
is a deformation of one map to another. Two spaces X and
Y are homotopy equivalent if there exist continuous maps
f : X → Y and g : Y → X such that g ◦ f and f ◦ g are
homotopic to the identity maps on their respective spaces.
As an example, f could be the inclusion of a circle into an
annulus, and g could be radial projection of the annulus onto
the circle.

In situations such as this one, where f is an inclusion and f◦g
is actually equal to the identity map, the homotopy equiva-
lence is called a deformation retraction. See Spanier [1989]
for details of these definitions. Our simplification algorithm
also performs a sequence of deformation retractions on the
original medial axis to generate a simplified medial axis with
the same homotopy type as the original.

3.4 θ-Simplified Medial Axis

Given a polyhedral model O and a medial axisM, the sepa-
ration angle Θ(x) at each point x onM is the largest angle
subtended by a pair of nearest neighbor points on ∂O, and
is given by

Θ(x) = max
yi,yj∈NS(x)

(∠yixyj)

Given an angle θ, the θ-simplified medial axis (θ-SMA) of
O, denoted by Mθ, is the set of points of M with separa-
tion angle greater than θ [Foskey et al. 2003] (see figure 2).
Foskey et al. [2003] discuss the convergence and stability

Figure 2: θ-Simplified Medial Axis,Mθ: (a) The medial axis
(black) of a part of a polyhedron (blue) (b)Mθ for θ = π/2.

of Mθ and provide error bounds on the boundary recon-
structed from Mθ. The speed of medial axis formation at
point x is proportional to 1

sin Θ(x)
[Pizer et al. 2003]. Parts

of the medial axis with a higher speed of formation are re-
garded as more important [Blum 1967], and the separation
angle Θ(x) has been used as a measure of the stability of the
medial axis at the point x.

4 θ-Homotopy Medial Axis

In this section, we analyze the topological characteriza-
tion of θ-SMA and present a formulation for computing a

homotopy-preserving simplified medial axis, the θ-homotopy
medial axis. The problem with the θ-SMA is that it does
not in general preserve the homotopy type of the medial
axis. The θ-SMA can be disconnected when the medial axis
is connected, or have holes when the medial axis does not,
and lack holes when the medial axis has them. An illus-
tration of the failure of connectivity is shown in Figure 3.
The other kinds of connectivity problems also arise because

Figure 3: The θ-Simplified Medial Axis, Mπ/3 is discon-
nected even though the original object O is connected. Note
that the separation angle at x is less than π/3, while it ex-
ceeds π/3 for the portions of the medial axis shown.

the angle criterion may discard topologically significant por-
tions. The fundamental issue here is that homotopy type
is a global property, whereas the separation angle is a local
measure.

Decreasing the θ threshold does not provide a guaranteed
solution to fix the problems. As illustrated in Figure 3, the
problem is associated with local minima of the separation
angles, and such a local minimum can occur for any value of
θ. In any event, decreasing θ only increases the number of
unstable features of the θ-SMA.

Our goal is to compute a simplified medial axis that would
allow significant simplification corresponding to large values
of θ, while preserving the homotopy type of M. Clearly
such a simplified medial axis has to be a superset of Mθ.
However, we would like such an axis to be minimal in some
regard in order to minimize the unstable parts. We now
formally present the desired subset of the medial axis. Let
Hθ denote the class of subsets of M which are supersets of
Mθ and are homotopy equivalent to M.

Hθ = {X |X ⊆M,X ⊇Mθ,X 'M}

Define a set X ∈ Hθ to be irreducible if the removal of any
sheet yields a set that either has a different homotopy type,
or is no longer a superset of Mθ. That is,

M∗
θ = {X |X ∈ Hθ, for all fi ∈ X , (X \ {fi}) /∈ Hθ}

We will refer to any irreducible set in Hθ as a θ-homotopy
medial axis, or θ-HMA. We will typically denote a θ-HMA
byM∗

θ . The setM∗
θ is not unique. A discussion about lack

of uniqueness is presented in section 8.

5 θ-Homotopy Medial Axis Computation

In this section we present an algorithm for computing a θ-
HMAM∗

θ . We begin by computing a Voronoi diagram of the
polyhedron using spatial subdivision techniques presented



in [Sud and Manocha 2005]. Our approach is similar to
the subdivision algorithm of [Etzion and Rappoport 2002].
A Voronoi graph is computed that represents the connec-
tivity of the Voronoi diagram of the polyhedron. A node
in the graph corresponds to a Voronoi face, edge or vertex
and an edge indicates an incidence relationship between two
nodes. The algorithm computes an exact Voronoi graph of
the polyhedron if the Voronoi diagram is not degenerate. In
presence of degeneracies, it computes an ε-Voronoi graph,
similar to [Etzion and Rappoport 2002]. However, in con-
trast to this work, our algorithm subdivides a cell till the
arrangement of Voronoi faces can be unambiguously deter-
mined from a labeling of the governors at the corners of
the cell. We use a simple subdivision criteria, and reduce
computation of intersections of conic sections on faces of a
cell. Furthermore, the algorithm can handle internal voids
in the polyhedron. Given the Voronoi graph, a sub-graph
corresponding to the medial axis M of the polyhedron is
computed using the property of Lemma 12 in [Etzion and
Rappoport 2002]. The Voronoi faces, edges and vertices cor-
respond to the medial axis sheets, seams and junctions re-
spectively. We refer to this sub-graph, which captures the
connectivity of different elements of the medial axis M, as
the connectivity graph of M.

The diameter of a cell after the spatial subdivision gives
a polygonal approximation to the geometric part of the
Voronoi diagram. The approximation has bounded Haus-
dorff error to the exact Voronoi diagram, like the Proximity
Structure Diagram [Etzion and Rappoport 2002]. This geo-
metric approximation is used to construct a polygonal mesh
approximation of the θ-HMA consisting of axis aligned faces.

Given the exact medial axisM, our simplification algorithm
is presented in Section 5.2 and it simplifies the medial axis
by pruning sheets of the medial axis. We first define the
separation angle of a sheet fi to be the supremum of the
separation angles for all points interior to the sheet:

Θ(fi) = max
x∈f◦

i

(Θ(x)).

Θ(fi) gives a measure of the stability of the sheet fi. We
use a conservative definition for the separation angle of the
sheet to ensure that the simplified medial M∗

θ is a superset
of Mθ. Similarly we define the separation angle of a seam
ei as:

Θ(ei) = max
x∈e◦

i

(Θ(x)).

5.1 Sheet Separation Angle Computation

The Voronoi diagram computation algorithm computes a
piecewise linear approximation of each sheet based on a dis-
crete sampling introduced by spatial subdivision. In this
section, we address the problem of computing a bounded
approximation of the sheet separation angle Θ(fi). Each
sheet of the medial axis of a polyhedron is trimmed quadric
surface [Culver 2000]. Exact computation of the sheet sepa-
ration angle involves computing the extreme value of a non-
linear function on a quadric surface. Instead we present an
efficient approach to compute a conservative upper bound on
the separation angle using spatial subdivision. The tightness
of the bound depends on the degree of subdivision.

Given a cell C and a sheet fi intersecting the cell, our goal is
to compute the maximum separation angle for all points on
the sheet inside the cell. Let {p1, p2} be the two governors

of the sheet fi and c be the center of the cell C. We classify
the inputs into 2 cases:

1. The governors do not intersect the cell C, i.e. C ∩
{p1, p2} = ∅

2. At least one of the governors intersects the cell C, i.e.
C ∩ {p1, p2} 6= ∅.

Case 1: C ∩{p1, p2} = ∅. We simplify the problem to com-
puting the maximum of the separation angles for all points
inside the cell to the two governors. We compute the sepa-
ration angle from the center c of the cell to each of the two
governors and add conservative error bounds to get the max-
imum separation angle. Let x be any point inside cell C. Let
ni(x) denote the normal vector from a point x to the sites
pi, (i = 1, 2), and αi(x) represent the angle between ni(c)
and ni(x). If ∆θi is an upper bound on αi(x) for all x ∈ C,
then the maximum separation angle for sheet fi inside cell
C is given by:

Θ(fi ∩ C) ≤ cos−1

(

n1(c) · n2(c)

|n1(c)||n2(c)|

)

+ ∆θ1 + ∆θ2

The computation of the error bounds ∆θi for each of the
three types of governors (point site, line site and triangle
site) is presented below:

Figure 4: Normal Cone to compute ∆θ for a point site

Point Site pi : p. The range of angles subtended by a point
site to all points in the cell is given by a normal cone. The
normal cone is the smallest cone enclosing the cell C with the
apex at p and axis along ni(c) (see figure 4). Let ∆θi be the
half opening angle of the cone. The angle αi(x) is maximized
when point x is one of the corner vertices vj (1 ≤ j ≤ 8) of
the cell C. Thus, for the smallest cone enclosing the cell C,

∆θi = max
1≤j≤8

[

cos−1

(

ni(vj) · ni(c)

|ni(vj)||ni(c)|

)]

, where ni(x) = p−x.

Line Site pi : p+λ(q−p). The range of angles subtended

Figure 5: Wedge to determine ∆θ for a line site



by a line to all the points in the cell is given by the smallest
wedge enclosing the cell, with the top edge of the wedge
being the line site (see figure 5). Let ∆θi be the half angle
of the wedge. As in the point site case, the angle αi(x)
is maximized when point x is one of the corner vertices vj

(1 ≤ j ≤ 8) of the cell C. Thus, for the smallest wedge
enclosing the cell C,

∆θi = max
1≤j≤8

[

cos−1

(

ni(vj) · ni(c)

|ni(vj)||ni(c)|

)]

,

where ni(x) = p + λ(q− p)− x, λ =
(x− p) · (q− p)

(q− p)2
.

Triangle Site pi with face normal n̂. The shortest path
from any point to the triangle is perpendicular to the face.
Thus ni(x) = n̂ for all x, and ∆θi = 0.

Case 2 C ∩ {p1, p2} 6= ∅. If the two sites do not intersect
(p1 ∩ p2 = ∅), then the bisector surface (and sheet fi) also
do not intersect either site. In such a case we can subdivide
the cell C into sub-cells {Ck} such that Ck ∩ {p1, p2} = ∅ if
C ∩ fi 6= ∅. The computation of the sheet separation angle
is then reduced to Case 1.

If the two sites intersect (p1 ∩ p2 6= ∅), then the sheet corre-
sponds to one of the non-generic cases of a bisector surface
[Culver 2000], and the separation angle Θ(fi) can be deter-
mined exactly from the pairs of governors. The case of two
point governors case never occurs, we examine each of the
other 5 pairs of governors individually.

Point-Triangle The bisector surface is a redundant line,
and never occurs on the medial axis [Culver 2000].

Point-Line The bisector surface is a plane through the point
and perpendicular to the line, Θ(fi) = 0

Line-Line The bisector surface is an orthogonal plane pair,
Θ(fi) = angle between the two lines.

Line-Triangle The bisector surface is a right circular cone,
or a plane if the line is incident on the triangle. In first

case, the separation angle Θ(fi) = π/2− cos−1(̂l · n̂), where

l̂ and n̂ are unit normals along the line and to the triangle
respectively. In the second case, Θ(fi) = 0.

Triangle-Triangle The bisector surface is an orthogonal
plane pair, and the separation angle is given by Θ(fi) =
cos−1(n̂1 · n̂2), where n̂1, n̂2 are unit normals to the two
triangles.

5.2 Simplification Algorithm

We now present our medial axis simplification algorithm.
We treat the medial axis M as an abstract 2-dimensional
complex consisting of faces, edges, and vertices. Initially,
edges correspond either to the seam curves, which lie be-
tween sheets, or rim curves, which lie on the boundary.

The key idea in our algorithm is a simple criterion for deter-
mining whether a sheet can be removed without changing
the homotopy type of the medial structure. We call such
sheets frontier sheets (Figure 6). We will describe this crite-
rion below, but first give an overview of how it is used in the
algorithm. We maintain a set Q of all frontier sheets. We
successively remove sheets from this set until it is empty. As
each sheet is removed from Q, it is also removed from the

Figure 6: Classification of sheets for iterative pruning: The
sheets colored gray are frontier sheets, and can be removed
without changing the homotopy type. For the ‘loop’ sheets the
rim set is not connected and they will never become frontier
sheets. The ‘interior’ sheet has an empty rim set, however
it may become a frontier sheet after removal of one of its
adjacent sheets.

medial structure if its separation angle is no greater than θ.
Removal of a sheet from the structure can affect whether its
neighbors are frontier sheets, and so each time we remove a
sheet we check each neighbor of that sheet to see if it needs
either to be added or removed.

A sheet fi is defined to be a frontier sheet provided that its
set of rim points R(fi) and its set of seam points S(fi) are
both connected and nonempty. The set Q is defined as:

Q = {fi | R(fi) 6= ∅,R(fi) is connected,

S(fi) 6= ∅,S(fi) is connected}. (1)

In Section 6.2 we will prove that the frontier sheets are pre-
cisely those sheets which may be removed without changing
the homotopy type. We present an intuitive justification
for that claim here. If the rim set and seam set are both
connected then each set is a single curve, and removing the
sheet is equivalent to retracting the sheet onto its seam set
via a homotopy (see Figure 7(a)). On the other hand, if

Figure 7: Sheet pruning: (a) The cyan sheet is a valid fron-
tier sheet, and has a deformation retract to its seam set. (b)
The cyan sheet is not a frontier sheet. (c) Removing the
sheet makes the two adjacent sheets disconnected.

the rim set is disconnected or empty, removing the sheet
removes a path between two points on different seam com-
ponents and hence does not preserve the homotopy type (see
Figures 7(b),(c)). Note that, when we remove a sheet, we
remove its interior and its rim set, but not its seam set.

We noted earlier that removing a sheet can cause other
sheets either to lose or gain frontier status, and we can now
explain why this is true. A sheet with an empty rim set can
gain a rim edge if one of its neighboring sheets is removed,
and thereby become a frontier sheet. Conversely, a sheet
with a single seam component can find that its seam set is
broken into two components if an adjacent sheet is removed.

Algorithm 1 simplifiesM based on removal of frontier sheets.
Let the resulting medial subset after the jth iteration be
Mj , and let the corresponding frontier set be Qj . The fron-
tier set is maintained as a priority queue, the priority deter-



Input: Initial (Blum) medial axis M0, angle θ
Output: Final medial subset Mf

Label all sheets in M as unmarked1

Initialize Q0, j ← 02

repeat3

fi ← ExtractSheet (Qj)4

(Qj+1, Mj+1) ← RemoveSheet (fi, Qj , Mj , θ)5

j ← j + 16

until (Qj = ∅)7

Mf ← Mj+18

Algorithm 1: SimplifyMAT(M0, θ).

mined by the sheet separation angle. Initially, M0 = M.
Q0 is computed using M0 in equation (1). The function
ExtractSheet(Qj) in line 4 returns a sheet with minimum
separation angle from the set Qj (but does not remove it
from Qj). The key step in the algorithm is the removal of a
frontier sheet in line 5, which is described in Algorithm 2.

Input: A frontier sheet fi, frontier set Qj , medial
subset Mj , angle θ

Output: Frontier set Qj+1, medial subset Mj+1

if Θ(fi) ≥ θ then1

Label fi as fixed2

Qj+1 ← Qj \ {fi}3

else4

Mj+1 ←Mj \ {fi}5

Qj ← Qj \ {fi}6

Qj+1 ← UpdateFrontierNbrs(fi,Qj)7

end8

Algorithm 2: RemoveSheet(fi, Qj , Mj , θ).

Algorithm 2 removes a frontier sheet from the medial subset
Mj only if the separation angle of the sheet lies below the
angle threshold θ. (line 1). The removal of a frontier sheet
does not change the homotopy type of Mj . As we noted
earlier, removal of the sheet fromMj may change the fron-
tier status of its neighboring sheets. Neighboring sheets are
checked for such changes and the frontier set is updated in
(line 7), which is described in detail as Algorithm 3.

Input: A frontier sheet fi, frontier set Qj

Output: Frontier set Qj+1

Initialize Qj+1 ← Qj1

foreach sheet fk sharing a seam point with fi do2

if (Label(fk) 6= fixed) then3

if (fk is a frontier sheet) then4

Qj+1 ← Qj+1 ∪ {fk}5

else6

Qj+1 ← Qj+1 \ {fk}7

end8

Algorithm 3: UpdateFrontierNbrs(fi, Qj)

6 Correctness

In this section we demonstrate that Algorithm 1 is correct,
i.e. the final medial subset is a valid θ-HMA. Let Mf be

the subset of M obtained as the final out of algorithm 1.
To prove correctness, we must show thatMf containsMθ,
Mf has the homotopy type of M, and Mf is irreducible.
We will first show that Mθ ⊂Mf .

6.1 Separation Angles of Medial Axis Parts

It is clear from the definition of the separation angle for a
sheet that every sheet interior point that is removed will
have a separation angle no greater than the threshold θ. So
it remains to show that no seam or junction point is removed
if its separation angle is greater than θ.

The set of governors for all points in the interior of the sheet,
and on the boundary curves, remains the same and each
governor is linear. Thus the separation angle Θ(x) is a con-
tinuous function of all points in the interior of a sheet, and
on the rim points on the boundary of the sheet. However,
the set of governors changes at a seam or a junction, causing
the separation angle to be discontinuous on the boundary of
the sheet (figure 8). Lemma 1 bounds the discontinuity in
the separation angle at the seam and junction boundaries of
a sheet.

Figure 8: Separation angle of a seam ei: Three sheets f1, f2

and f3 meet at a seam ei. For any point y on ei, Θ(y) ≤
Θ(f1).

Lemma 1.

(i) Let ei be a (non-degenerate) seam of a medial axis,
formed by intersection of three sheets f1, f2 and f3.
Then, Θ(ei) ≤ max1≤j≤3(Θ(fj))

(ii) Let vi be a (non-degenerate) junction of a medial axis,
formed by intersection of four sheets f1, f2, f3 and f4.
Then, Θ(vi) ≤ max1≤j≤4(Θ(fj))

Proof. (i) Let the set of governors of sheet f1 be Gov(f1) =
{a, b}. Since f1 and f2 intersect, Gov(f1)∩Gov(f2) 6= ∅.
Also Gov(f1) 6= Gov(f2) as two intersecting sheets
cannot have same set of governors. Thus |Gov(f1) ∩
Gov(f2)| = 1, and Gov(f2) = {b, c}. Similarly
Gov(f3) = {a, c}, and the set of governors of ei is
Gov(ei) = {a, b, c}. For any point x ∈ ei, the clos-
est points on a, b and c be ya, yb, yc. Then NS(x) =
{ya,yb,yc}, and by definition of Θ(x),

Θ(x) = max(∠yaxyb, ∠ybxyc, ∠yaxyc)

= ∠yaxyb (assume WLOG)

Let y be a point on sheet f1 inside a δ-neighborhood of
x. Since Θ(fi) is continuous and Gov(f1) = {a, b},
limy→x Θ(y) = ∠yaxyb = Θ(x). By definition of



(a) Model (b) θ-SMA (c) θ-HMA

Figure 9: Flange Plate Model (990 polygons): Medial axis
sheets through a cut-out of the model, θ = 150◦ (b) The
sheets become disconnected, holes disappear for the θ-SMA.
(c) In the θ-HMA the holes are preserved, and the entire
medial axis remains connected.

Θ(f1), Θ(f1) ≥ limy→x Θ(y). Hence, Θ(x) ≤ Θ(f1).
Since choice of point x on ei was arbitrary,

Θ(ei) = Θ(x) ≤ Θ(f1) ≤ max
1≤j≤3

(Θ(fj))

(ii) Proof follows as above, using 4 governors of the junc-
tion, instead of 3 governors of the seam.

The implication of Lemma 1 is that we can get an upper
bound on the separation angle of a non-degenerate seam
(junction) from the separation angles of the incident sheets.
This ensures that during simplification, if a seam (junction)
belongs to M∗

θ , then at least one of the incident sheets will
belong to M∗

θ . Conversely, if all incident sheets do not be-
long toM∗

θ , then the seam (junction) will not belong toM∗
θ .

Hence, it suffices to compute separation angles and test the
sheets for pruning during simplification.
Lemma 2. For a non-degenerate M, Mθ ⊆Mf .

Proof. Let x ∈ Mθ, i.e. Θ(x) ≥ θ. If x is in the interior
of a sheet fi, then Θ(fi) ≥ θ. If x is in the interior of a
seam ej , then by Lemma 1, Θ(fi) ≥ θ for some sheet fi

incident on that seam. Thus, fi will never be removed from
the medial subset, and so ej , being incident on fi will be
in Mf . Therefore, x ∈ ej will also be in Mf . In the same
way, Lemma 1 also implies that x ∈ Mf if x is a junction
point.

6.2 Homotopy Preservation

Lemma 3. Mf is homotopy equivalent to M.

Proof. We perform induction on j. Our proof is complete
if we show that Mj is homotopy equivalent to Mj+1, or,
equivalently, that removing a frontier sheet fi does not
change the homotopy type. If both the seam set S(fi) and
the rim set R(fi) are non-empty and connected, then the
boundary of the sheet can have at most two components. If
the boundary has one component, then the sheet is a topo-
logical disk, with a boundary consisting of two curves, the
seam set and the rim set. If the boundary has two compo-
nents, then one component must be the seam set, and the
other the rim set. In that case, the sheet is an annulus,
which can also be retracted onto the seam set.

The existence of a retraction means that there is a map
h : fi → S(fi) such that (a) the restriction of h to S(fi) is
equal to the identity on S(fi), and (b) g ◦ h is homotopic to
the identity on fi, where g is the inclusion S(fi) → fi. We

can then define ĥ :Mj →Mj+1 to be equal to the identity
on Mj+1 ⊂ Mj , and equal to h on fi. Then, if ĝ is the

inclusion Mj+1 →Mj , it is clear that ĥ ◦ ĝ is equal to the

identity onMj+1, and ĝ ◦ ĥ is homotopic to the identity on
Mj . Thus, the two spaces are homotopy equivalent to one
another.

Lemma 4. Mf is irreducible.

Proof. Let fi be any frontier sheet in the final subset Mf .
Then fi is labeled fixed, and either Θ(fi) ≥ θ or fi is an
isolated component. ThusMf \ {fi} is not a subset ofMθ,
or does not have the same number of components as M.

Let fi be any non-frontier node in the final connectivity
graph Mf . If Θ(fi) ≥ θ, Mf \ {fi} is not a subset of Mθ.
If Θ(fi) < θ, then Mf \ {fi} is not homotopy equivalent to
Mf .

We prove this by treatingMj as a cell complex and consid-
ering its Euler characteristic. A 2-dimensional cell complex
in R

3 is a space that can be decomposed into open topolog-
ical disks (faces), open curves (edges) and points (vertices)
in such a way that the boundary of each face is a union of
edges and vertices from the decomposition, and the bound-
ary (that is, the endpoints) of each edge are vertices from
the decomposition. Strictly speaking, the medial axis is not
a cell complex, because the curves bounding frontier sheets
are not in general part of the medial axis. However, we may
add abstract edges without changing the homotopy type to
construct a cell complex. The Euler characteristic, given by
χ = F −E +V where F , E, and V are the numbers of faces,
edges and vertices respectively, is a well-known homotopy
invariant (see, e.g., [Spanier 1989]).

When we remove a sheet fi from Mj to get Mj+1, we re-
move all of the faces, edges, and vertices of fi except for the
edges and vertices that are part of the seam set S(fi). Thus,
the change in Euler characteristic resulting from removing
the sheet is given by

χ(Mj)− χ(Mj+1) = χ(fi)− χ(S(fi)).

We wish to show that χ(fi) − χ(S(fi)) is nonzero unless fi

is a frontier sheet.

The sheet fi (which is connected by definition) is homotopy
equivalent to a disk with n holes removed, for some n. The
Euler characteristic of such a complex is given by χ = 1−n.
The seam set consists of components of two types. There are
loops, for which the number of vertices equals the number
of edges, and χ = 0. There are also unclosed chains of
edges, for which there is one more vertex than edges, and
χ = 1. Therefore, χ(S(fi)) cannot be negative, so that
there are only two ways χ(fi)− χ(S(fi)) can be zero. First
we may have χ(fi) = χ(S(fi)) = 0, in which case fi is
an annulus with connected, non-empty seam and rim sets.
Second, we may have χ(fi) = χ(S(fi)) = 1, in which case
fi is a (topological) disk, also with connected seam and rim
sets. These cases are precisely the two kinds of frontier sets.

Together, the foregoing results show that Mf = M∗
θ , as

desired.



(a) Model (b) θ-SMA (c) θ-HMA

Figure 10: Brake Rotor Model (4.7k polygons): Rim curves
are shown in green, θ = 150◦ (b) The small holes in the
center disappear in the θ-SMA, and the outer boundary be-
comes disconnected. (c) the θ-HMA the holes in the center
are preserved, and the entire medial axis remains connected.

7 Implementation and Results

In this section we describe the implementation of our algo-
rithm and highlight its performance on a number of complex
benchmarks.

7.1 Implementation

We implemented the system in Microsoft Visual C++ and
use OpenGL as the graphics API. All the timings reported
in this paper were generated on a Pentium IV 2.4GHz PC
with 2GB RAM running Windows XP. Our implementation
for computing the Voronoi diagram is based on the tech-
niques described in [Sud and Manocha 2005], from which
the connectivity graph is extracted.

To test if a sheet fi is a frontier sheet, we first extract a
sub-graph of the connectivity graph. The sub-graph corre-
sponds to fi and its incident set of seam curves S(fi). We
then perform a depth-first-search on the sub-graph to deter-
mine the number of components in S(fi) and in R(fi)). If
sheet fi is a frontier sheet, then number of components in
R(fi) and S(fi) is 1. Iterative pruning during the medial
axis simplification algorithm involves removal of nodes cor-
responding to the sheets and incident seam curves. The final
graph captures the connectivity of the θ-HMA. The priority
queue Qj is implemented as a heap.

7.2 Models and Results

We have applied our algorithm to compute the θ-HMA of
polyhedral models of various sizes, ranging from 1000 trian-
gles to 60k triangles. The complexity of the Blum medial
axis ranged from 1.3k sheets to 89k sheets. Our benchmark
models include CAD models with many sharp edges and
high-aspect-ratio triangles. Such models can be relatively
hard for medial axis algorithm that compute a point sam-
pling on the boundary of the objects and a Voronoi diagram
of the point samples. Some of the benchmark models have a
high genus and holes that are preserved during medial axis
simplification. We also tested our algorithm on synthetic
benchmark models obtained by performing boolean opera-
tions with various solids.

For simplicity, in the figures we only show seam curves that
are the intersections of three or more sheets. Also, max-
imally connected 2-manifolds have been grouped into one

(a) θ-SMA (b) θ-HMA

Figure 11: Primer Anvil Model (4.3k polygons): Model
boundary is shown in wireframe. The medial axis sheets
are in blue, rim curves in green, seam curves in magenta,
θ = 150◦ (a) In the θ-SMA the sheets become disconnected,
a thin sheet remains at the bottom (b) In the θ-HMA the
sheets remain connected.

sheet. The models and their corresponding medial axes are
shown in Figures 9 - 14. The polygonal meshes correspond-
ing to the θ-SMA and θ-HMA have been smoothed using
Taubin’s algorithm [1995]. Table 2 lists the complexity of
the polyhedral models, and of the original medial axis and
corresponding simplifications θ-HMA and θ-SMA. The time
to simplify the Blum medial axis to θ-HMA is also listed.

Model Polys θ Num Sheets Time

(◦) BMA θ-HMA θ-SMA (s)

Plate 990 150 1896 21 22 1.29

Rotor 4736 150 1365 41 17 1.23

Mount 2442 45 7455 536 283 2.43

Ridge-Rod 5012 120 30676 74 36 18.10

Anvil 4340 150 32102 4 4 17.51

Drivewheel 60712 150 89885 4 3 26.05

Table 2: Medial Axis Complexity: Polygon and sheet count
of various models. θ is the separation angle (in degrees)
used for computing θ-HMA and θ-SMA. Num Sheets refers
to number of sheets in the exact Blum medial axis (BMA),
and the simplified θ-HMA and θ-SMA. Time is the time in
seconds used by Algorithm 1 to compute the θ-HMA from the
Blum medial axis.

8 Analysis and Limitations

In this section we analyze the performance of our simplifi-
cation algorithm. We highlight its computational complex-
ity, give topological guarantees on the output and perform
comparisons with some related algorithms for medial axis
simplification.

8.1 Time Complexity

We provide the complexity of the algorithm as a function of
the combinatorial complexity of the Blum MAT. A key step
in our simplification algorithm is the operation to check if a
sheet fi is a frontier sheet. Let |S(fi)| denote the number
of seam curves incident on fi, given by the number of sheets
adjacent to fi, and 〈|S(f)|〉 be the average number of seam



(a) Model (b) θ-HMA

Figure 12: CAD Mount (2.4k polygons), θ = 45◦: The sheets
emerging from the center of the vertical rod have low sepa-
ration angle and have been removed. Note that the removal
does not change the homotopy type.

curves of a sheet. Then the cost of checking if a sheet fi

is frontier is O(|S(fi)|). We first present the cost of Algo-
rithm 3. In the worst case, the frontier sheet check is per-
formed on each sheet fk adjacent to a sheet fi, i.e. |S(fi)|
times. The cost of each frontier check is O(|S(fk)|). The
cost of adding or deleting a sheet from the priority queue
Qj is O(log |Qj |). Hence the cost of a single instance Al-

gorithm 3 is
∑|S(fi)|

k=1 [O(|S(fk)|) + O(log |Qj |)]. Therefore,
the cost of a single instance of Algorithm 2 is O(log |Qj |) +
∑|S(fi)|

k=1 [O(|S(fk)|) + O(log |Qj |)] = O(〈|S(f)|〉2 +log |Qj |).
A sheet fi can get added to the frontier set Qj at most
|S(fi)| times. Hence, the number of iterations in Algo-

rithm 1 is at most
∑|F|

i=1 |S(fi)| = O(|F|〈|S(f)|〉). More-
over, the size of the frontier set is bounded by the number
of sheets, |Qj | ≤ |F|. Thus the total cost of the Algorithm 1
is O(|F|〈|S(f)|〉3 + |F| log |F|〈|S(f)|〉). Typically, 〈|S(f)|〉is
a constant, the size of the frontier set is much smaller than
|F|, and the simplification cost is usually linear (or better)
in |F|.

Figure 13: Cube with spherical void (1.5k polygons: A cut-
out showing the cube and the spherical void in the center.
The θ-HMA curves are drawn in magenta, θ = 180◦. The
θ-HMA remains connected, and preserves the void.

8.2 Comparisons with Other MAT Simplification Al-

gorithms

In this section, we compare some features of our MAT sim-
plification algorithm with prior techniques. There are many
known approaches for computing and simplifying the me-
dial axis. It is hard to make direct comparisons between

all these algorithms, as different algorithms make varying
assumptions about the input and generate different kind of
approximations.

The main feature of our approach is that we preserves the
homotopy type of the medial axis while allowing for signif-
icant simplification of the medial axis. Our algorithm has
been applied to polyhedral models as input, and faithfully
captures the medial axis near sharp edges and corners in the
input. Further, the algorithm preserves cavities correspond-
ing to internal voids in the medial axis.

Some of the earlier analytic algorithms for MAT computa-
tion are based on tracing the seam curves [Culver et al. 1999;
Reddy and Turkiyyah 1995; Sherbrooke et al. 1996]. These
algorithms are relatively expensive and the worst case com-
plexity is O(n3), where n is the number of features in the
input solid. In practice, they have been applied to polyhe-
dral models with few thousand triangles and compute the
Blum medial axis and not a simplification of the medial
axis. The adaptive subdivision algorithms [Vleugels and
Overmars 1995; Etzion and Rappoport 2002] compute the
generalized Voronoi Diagram, rather than a simplified me-
dial axis. Further, these approaches may not be able to
handle polyhedral models with internal voids.

The surface sampling approaches, such as [Amenta et al.
2001; Dey and Zhao 2002], take a point sampling on the
surface as input and approximate the medial axis using the
Voronoi diagram. Robust and efficient methods for comput-
ing the Voronoi diagram for point samples are well known. It
is hard to make a direct comparison, as the output generated
by these algorithms is different than our approaches which
compute a distance field on a spatial grid. Many times the
algorithms based on a point samples of the boundary may
not be able to generate a good quality of approximation of
the medial axis near the sharp features of the polyhedral
model. The convergence of the Voronoi diagram to the me-
dial axis with a finite discrete sampling has been proven,
and extended algorithms have been proposed to generate
good quality approximations for CAD models [Dey and Zhao
2002]. However, these methods guarantee a convergence to
the medial axis in the limit, and may not provide topologi-
cal guarantees on the computed medial axis approximation.
Tam and Heidrich [2003] describe an iterative algorithm to
simplify the medial axis of polyhedral models while avoiding
some topological artifacts during the construction. Their
work builds upon point sampling approaches, and has been
applied to scanned models without many sharp features.
There are no guarantees on the homotopy equivalence of
the medial axis. Furthermore, the pruning algorithm needs
to perform expensive global operations for topology preser-
vation.

The λ-medial axis [Chazal and Lieutier 2004] provides a sim-
plification of the medial axis for any open bounded shape in
R

n with homotopy equivalence to the original medial axis.
The constraints on λ depend on the critical points in the
gradient field of the distance function. An ε-sampling of the
boundary of the shape is required, the choice of ε depends
on different heuristics. Also, a single value of λ may not be
appropriate to provide significant simplification for the en-
tire shape. We are not aware of a practical implementation
of this method. Attali et al. [2004] acknowledge these open
issues and suggest a nested sequence of λ-Voronoi graphs
with different values of λ for portions of the shape. In fact,
a λ-medial axis with a small value of λ can be used as the
original medial axis for our simplification algorithm, which



(a) Model (b) Blum Medial Axis (c) Medial Axis Closeup

(d) θ-HMA sheets, θ = 150◦ (e) θ-HMA sheets, θ = 90◦ (f) θ-HMA sheets closeup, θ = 90◦

Figure 14: DriveWheel model (60k Polygons) and medial axis at different resolutions: Artificial noise was added to the model.
Rim curves are shown in green, seam curves are shown in magenta. (a) The Model, with the front faces shown in wireframe
(b) Blum medial axis, black box highlights the zoomed in region (c) A closeup highlighting the tiny sheets corresponding to the
unstable parts. (d) Sheets of the θ-HMA, θ = 150◦. Connectivity of the model and all holes are preserved. (e) Sheets of the
θ-HMA, θ = 90◦, black box highlights the zoomed in region (f) A closeup of the θ-HMA, θ = 90◦, showing the stable subset of
the medial axis.

subsequently allows significant simplification while preserv-
ing homotopy equivalence.

8.3 Limitations

Our approach has a few limitations. Our simplification algo-
rithm depends on a spatial subdivision scheme to compute
the Voronoi graph of the polyhedron. Similar to [Etzion and
Rappoport 2002], the subdivision scheme generates a topo-
logically accurate Voronoi diagram in absence of degenera-
cies. In degenerate configurations, the algorithm computes
an approximate Voronoi graph which may not preserve ho-
motopy equivalence to the original polyhedral model. The
measure of stability that depends on separation angles, pro-
vides scale invariance but may retain noisy features if they
exhibit high separation angles. Our simplification algorithm
uses a greedy approach for pruning the unstable parts of the
medial axis and a global minimum of the stability measure
is not guaranteed. The elementary primitive in our pruning
algorithm is a sheet, and the amount of simplification is in-
fluenced by the size of sheets. Finally, the simplified medial
axis is not unique for a fixed value of θ, but depends on the
pruning order. Actually, determining a unique order for it-
erative pruning for 3D models using topological constraints
is still an open problem [Pizer et al. 2003].

9 Conclusions and Future Work

We have presented a medial axis approximation, the θ-HMA,
that computes a stable subset of Blum’s medial axis, and
preserves the homotopy type of Blum’s medial axis. The
stability of the medial axis is guided by a separation angle
criterion, which has been well studied. For polyhedral mod-
els, we present a formal characterization of the relationship
between the stability of medial axis junctions and seams to
the stability of incident sheets, based on separation angles.
Our algorithm computes a bounded measure of stability of a
medial axis sheet using discrete sampling. The construction
of the θ-HMA is based on an iterative pruning algorithm
which uses efficient local tests.

There are several avenues of future work. We would like
to study other medial axis simplification criteria in conjunc-
tion to separation angles. We would also like to compute
a θ-HMA with better guarantees on the global minimum of
the stability measures, possibly leading to a unique prun-
ing order. We would like to extend our algorithm to han-
dle degenerate configurations of the Voronoi diagram, both
in terms of topology of the θ-HMA and the stability rela-
tionship between incident parts of the medial axis. We are
interested in applying the simplification algorithm to other
medial axis approximations. Finally, we would like to ex-
plore applications of the θ-HMA such as mesh generation
and shape analysis.
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