
Interactive View-Dependent Rendering with Conservative Occlusion
Culling in Complex Environments

Sung-Eui Yoon Brian Salomon Dinesh Manocha
University of North Carolina at Chapel Hill

{sungeui,salomon,dm}@cs.unc.edu
http://gamma.cs.unc.edu/VDR

Abstract
This paper presents a novel algorithm combining view-dependent
rendering and conservative occlusion culling for interactive display
of complex environments. A vertex hierarchy of the entire scene
is decomposed into a cluster hierarchy through a novel clustering
and partitioning algorithm. The cluster hierarchy is then used for
view-frustum and occlusion culling. Using hardware accelerated
occlusion queries and frame-to-frame coherence, a potentially
visible set of clusters is computed. An active vertex front and
face list is computed from the visible clusters and rendered using
vertex arrays. The integrated algorithm has been implemented
on a Pentium IV PC with a NVIDIA GeForce 4 graphics card
and applied in two complex environments composed of millions
of triangles. The resulting system can render these environments
at interactive rates with little loss in image quality and minimal
popping artifacts.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling - surface and object representations

Keywords: Interactive Display, View-Dependent Rendering,
Occlusion Culling, Level of Detail, Multiresolution Hierarchies

1 Introduction
Complex models composed of millions of primitives have become
increasingly common in computer graphics and scientific visual-
ization. One of the major challenges is rendering these datasets at
interactive rates on commodity hardware. Different rendering ac-
celeration algorithms based on model simplification and visibility
culling have been developed that reduce the number of primitives
sent through the graphics pipeline.

Model simplification algorithms reduce the number of primitives
by replacing highly tessellated objects in the scene by coarser rep-
resentations. These algorithms generate different levels-of-detail
(LODs). At a high level, they can be classified into static and dy-
namic algorithms. The static LOD generation algorithms precom-
pute discrete approximations and switch between them at runtime
based on the viewer’s position. These algorithms have very little
runtime overhead and can efficiently use vertex arrays and display
lists. However, switching between different LODs can lead to pop-
ping artifacts at runtime.

Dynamic simplification (or view-dependent rendering (VDR))
algorithms represent an environment using a hierarchy of simpli-
fication operations (e.g. vertex hierarchy). The rendering algorithm
traverses the hierarchy in an incremental manner and computes a
front that satisfies the error bound based on the viewing parame-
ters. VDR algorithms offer several benefits over static LOD-based
systems. First, the level of mesh refinement can vary over the sur-
face of an object to meet the error bound in the screen space. This

Figure 1: Coal-Fired Power Plant: This environment consists of
over 12 million triangles and 1200 objects. Our view-dependent
rendering with occlusion culling algorithm can render this environ-
ment at 10 − 20 frames per second with very little loss in image
quality on a Pentium IV PC with a NVIDIA GeForce 4 graphics
card.

alleviates the popping artifacts that occur when an LOD changes.
Furthermore, view information not available during a preprocess
can be used to preserve effects such as silhouette edges and specular
highlights. Despite these advantages, the application of VDR algo-
rithms to complex environments has been limited. Problems arise
from traversing and refining an active vertex front, or cut, across the
vertex hierarchy. In practice, refining a front for a model composed
of hundreds of objects or millions of polygons can take hundreds of
milliseconds or more per frame. Moreover, rendering the triangles
in the front at interactive rates may not be possible, especially on
models with high depth complexity.

Conservative occlusion culling algorithms cull away portions of
the scene that are not visible from the current view location using
a potentially visible set (PVS). Most of these algorithms represent
the scene using a spatial partition or bounding volume hierarchy
and perform object-space or image-space culling tests to compute
the PVS at runtime.

Given the complexity of large environments, integrated ap-
proaches that combine model simplification and occlusion culling
are needed for interactive display. However, current techniques
merely combine static LODs with conservative occlusion culling
or VDR with approximate occlusion. Each of these techniques can
generate popping artifacts at runtime. It is important to develop an
integrated representation that can be used both for VDR and con-
servative occlusion culling.

Main Contributions: We present a novel algorithm that combines
VDR with conservative occlusion culling. We precompute a vertex
hierarchy of simplification operations for a large environment and a
cluster hierarchy on top of the vertex hierarchy. We discuss a num-
ber of criteria to design an optimal cluster hierarchy and present
techniques that automatically compute the hierarchy for large en-
vironments. We associate a bounding volume with each cluster so

that the cluster hierarchy implicitly functions as a bounding volume
hierarchy and is used to perform occlusion culling using hardware
accelerated occlusion queries.

The runtime algorithm maintains a list of active clusters. This list
is traversed as the mesh is refined within visible clusters to meet the
error bound. The primitives within the refined clusters are rendered
using vertex arrays. The cluster-based occlusion culling algorithm
limits the size of the active vertex front. As a result, the algorithm
can refine and render the front at interactive rates.

The overall algorithm has been implemented on a Pentium IV
PC with a NVIDIA GeForce 4 graphics card. It has been applied
to two complex environments: a power plant model with more than
1200 objects and 12.2 million triangles, and an isosurface model
composed of 2.4 million polygons and a single object. The algo-
rithm can render these datasets at 10 − 20 frames a second with
very little loss in image quality and minimal popping artifacts.

New Results: Some of the novel aspects of our work include:

• An integrated scene representation for simplification and vis-
ibility computations based on a vertex hierarchy and a cluster
hierarchy.

• An automatic cluster generation algorithm that takes into ac-
count several criteria important for occlusion culling.

• The first integrated algorithm for VDR and conservative oc-
clusion culling that runs on commodity hardware, uses vertex
arrays and is applicable to large and complex environments.

Organization: The rest of the paper is organized as follows: We
give a short survey of previous work on VDR and occlusion culling
in Section 2. In Section 3 we give a brief overview of our ap-
proach as well as the underlying representation. Section 4 de-
scribes the cluster hierarchy generation and partitioning algorithm.
The runtime algorithm for view-dependent refinement and occlu-
sion culling is detailed in Section 5. We describe our implementa-
tion and highlight its performance on two complex environments in
Section 6. Finally, in Section 7 we highlight areas for future work.

2 Related Work
We give a brief overview of the previous work in view dependent
rendering, occlusion culling, and integrated approaches.

2.1 View-Dependent Rendering
View-dependent rendering originated as an extension of the pro-
gressive mesh [Hoppe 1996]. A progressive mesh is built from an
input mesh by a sequence of edge collapses used to form a coarse
mesh. Vertex splits, the inverse of an edge collapse, are used to
restore the original mesh from the coarse mesh. Xia and Varsh-
ney [1997] and Hoppe [1997] each reported that many edge col-
lapses are independent and can be organized as hierarchies instead
of linear sequences to allow refinement at runtime. This representa-
tion allows an application to take into account view-dependent ef-
fects such as silhouette preservation and lighting. Luebke and Erik-
son [1997] developed a similar approach using octree-based vertex
clustering operations. El-Sana and Varshney [1999] extended these
ideas by using a uniform error metric based on cubic interpolants,
reducing the cost of mesh fold-over tests, and developing a Voronoi-
based method for creating “virtual edges”.

Pajarola [2001] improved the update rate of runtime mesh selec-
tion by exploiting properties of the half-edge mesh representation.
This approach is well suited to individual manifold objects. How-
ever, CAD/CAM models often contain disjoint objects and non-
manifold topology. El-Sana and Bachmat [2002] presented an al-
ternate approach to increase the update rate of VDR by using a
prioritization scheme. Several out-of-core VDR approaches have
been proposed in the literature for handling large datasets [Decoro
and Pajarola 2002; Lindstrom 2003].

2.2 Occlusion Culling
The problem of computing the visible set of primitives from a view-
point has been extensively studied in computer graphics and related
areas. A recent survey of occlusion culling algorithms is given in
[Cohen-Or et al. 2003]. Occlusion culling algorithms may be clas-
sified as region or point-based, image or object space, and conser-
vative or approximate.

Many occlusion culling algorithms have been designed for spe-
cialized environments, including architectural models based on
cells and portals [Airey et al. 1990; Teller 1992; Luebke and
Georges 1995] and urban datasets composed of large occluders
[Coorg and Teller 1997; Hudson et al. 1997; Schaufler et al. 2000;
Wonka et al. 2000; Wonka et al. 2001]. These approaches generally
precompute a potentially visible set (PVS) for a region. However,
these algorithms may not obtain significant culling on large envi-
ronments composed of a number of small occluders.

Object space algorithms make use of spatial partitioning or
bounding volume hierarchies [Coorg and Teller 1997; Hudson et al.
1997]; however, performing “occluder fusion” on scenes composed
of small occluders with object space methods is difficult. Image
space algorithms including the hierarchical Z-buffer [Greene et al.
1993; Greene 2001] and hierarchical occlusion maps [Zhang et al.
1997] are generally more capable of capturing occluder fusion.

The PLP algorithm [Klosowski and Silva 2000] uses an approx-
imate occlusion culling approach that subdivides space into cells
and assigns solidity values based on the triangles in each cell. This
algorithm can provide guaranteed frame rate at the expense of non-
conservative occlusion culling. However, it can lead to popping
artifacts as objects can appear or disappear between successive
frames. Klosowski and Silva [2001] augment PLP with an image
based occlusion test to design a conservative culling algorithm. The
iWalk system [Correa et al. 2002] uses the PLP algorithm along
with out-of-core preprocessing to render large models on commod-
ity hardware.

A number of image-space visibility queries have been added by
manufacturers to their graphics systems. These include the HP
occlusion culling extensions, item buffer techniques, ATI’s Hy-
perZ hardware, and the NV GL occlusion query OpenGL exten-
sion [Scott et al. 1998; Bartz et al. 1999; Greene 2001; Klosowski
and Silva 2001; Hillesland et al. 2002; Meissner et al. 2002]. Our
integrated algorithm also utilizes these occlusion queries to perform
occlusion culling.

2.2.1 Clustering
Often the original objects of a model are not represented in an op-
timal manner for occlusion culling algorithms. These algorithms
need to represent the scene using an object hierarchy. Therefore,
they create an object hierarchy by partitioning and clustering the
model, and at runtime classifying objects as occluders and poten-
tial occludees. One recent approach to partitioning and clustering is
presented by Baxter et al. [2002] and used in the GigaWalk system.
It decomposes a large environment into almost equal-sized objects
that are used for static LOD computations. Sillion [1994] and Gar-
land et al. [2001] presented hierarchical face clustering algorithms
for radiosity and global illumination. These approaches are not di-
rectly applicable to generating a cluster hierarchy from a vertex hi-
erarchy for view-dependent rendering and occlusion culling.

2.3 Integrated Approaches
Many algorithms have been proposed that combine model simpli-
fication and occlusion culling. The Berkeley Walkthrough system
[Funkhouser et al. 1996] combines visibility computation based on
cells and portals with static LODs for architectural models. The
MMR system [Aliaga et al. 1999] precomputes static LODs of ob-
jects and used hierarchical occlusion maps at runtime for interactive
display. The system assumes that the model is partitioned into rect-
angular cells.

Other approaches combining precomputed static LODs and con-
servative occlusion culling have been proposed [Baxter et al. 2002;
Govindaraju et al. 2003b]. These algorithms represent the environ-
ment as a scene graph, precompute HLODs (hierarchical levels-of-
detail) for intermediate nodes and use them for occlusion culling.
However, switching between static LODs and HLODs can cause
popping. Moreover, these algorithms use additional graphics pro-
cessors to perform occlusion queries.

El-Sana et al. [2001] combined view-dependent rendering with
the PLP algorithm to perform approximate occlusion culling. The
integrated algorithm uses the solidity values to guide simplifica-
tion, producing fewer triangles in mesh regions that are deemed
highly occluded. This approach has been applied to portions of the
power plant model consisting of hundreds of thousands of triangles.
However, the algorithm does not perform conservative occlusion
culling.

3 Overview
In this section we introduce some of the terminology and concepts
used in our algorithm and give a brief overview of our approach.
3.1 Preprocess
Most view-dependent rendering algorithms use a vertex hierarchy
built from an original triangulated mesh. The interior nodes are
generated by applying a simplification operation such as an edge
collapse or vertex clustering to a set of vertices. The result of the op-
eration is a new vertex that is the parent of the vertices to which the
operator was applied. Successive simplification operations build a
hierarchy that is either a single tree or a forest of trees. At runtime
the mesh is refined to satisfy an error bound specified by the user.

We use the edge collapse operator as the basis for our vertex hi-
erarchies and allow virtual edges so that disjoint parts of the model
can be merged. We store an error value corresponding to the local
Hausdorff distance from the original mesh with each vertex. This
value is used to refine the mesh at runtime by projecting it to screen
space where the deviation can be measured in pixels, which is re-
ferred to as “pixels of error.”

A mesh “fold-over” occurs when a face normal flips during a ver-
tex split or edge collapse. Vertex splits can be applied in a different
order at runtime than during the hierarchy generation. This means
that even though no fold overs occur during hierarchy generation,
they may occur at runtime [Hoppe 1997; Xia et al. 1997; El-Sana
and Varshney 1999]. To detect this situation we use a neighbor-
hood test. The face neighborhood is stored for each edge collapse
and vertex split operation when creating the hierarchy. At runtime,
an operation is considered fold-over safe only if its current neigh-
borhood is identical to the stored neighborhood.

The vertex hierarchy can be interpreted as a fine-grained bound-
ing volume hierarchy. Vertices have bounding volumes enclosing
all faces adjacent when the vertex is created during simplification.
However, such a bounding volume hierarchy is not well suited for
occlusion culling because each bounding volume is small and can
occlude only a few primitives. Furthermore, the culling algorithm
will have to perform a very high number of occlusion tests.

To address this problem, we partition the vertex hierarchy into
clusters and represent them as a cluster hierarchy. Each cluster con-
tains a portion of the vertex hierarchy. All vertex relationships from
the vertex hierarchy are preserved so that a vertex node may have
a child or parent in another cluster. The relationships of the cluster
hierarchy are based on those of the vertex hierarchy, so that at least
one vertex in a parent cluster has a child vertex in a child cluster.

We characterize clusters based on their error ratio and error
range. The error ratio is defined as the ratio of the maximum er-
ror value associated with a vertex in the cluster to that of the mini-
mum. The error range is simply the range of error values between
the maximum and minimum error values in a cluster. The error
ratio and range are used in hierarchy construction, as described in
Section 4.

We present a novel clustering algorithm that traverses the vertex
hierarchy to create clusters that are used for occlusion culling.
3.2 Runtime Algorithm
In a standard VDR algorithm, the active vertex front (also referred
to as the active vertex list) is composed of the vertices making up
the current mesh representation. The front must be updated every
frame by determining whether vertices on the front should be re-
placed with their parent to decrease the level of detail, or replaced
by their children to increase the detail in a region [Hoppe 1997;
Luebke and Erikson 1997; Xia et al. 1997]. Additionally, a list of
active faces, the active face list is maintained. In our algorithm the
front is divided among the clusters. The active front will only pass
through a subset of the cluster hierarchy which is called the “active
clusters.” These active clusters are traversed, and the active vertex
front is refined within each active cluster. We do not refine active
clusters that are occluded, leading to a dramatic improvement in
the front update rate and decreased rendering workload while still
conservatively meeting the error bound.

Occlusion culling is performed by exploiting temporal coher-
ence. During each frame, the set of clusters visible in the previous
frame is used as an occluder set. These clusters are first refined by
traversing their active fronts and then rendered to generate an oc-
clusion representation. Next, the bounding volumes of clusters on
the active front are tested for visibility. Only the visible clusters

are refined and rendered using vertex arrays. This visible set then
becomes the occluder set for the subsequent frame.
4 Clustering and Partitioning
In this section we present the cluster hierarchy generation algo-
rithm. We initially describe some desirable properties of clusters
for occlusion culling and present an algorithm designed with these
properties in mind. We also present techniques to partition the ver-
tices and faces among the clusters.
4.1 Clustering
We highlight some criteria used to generate the clusters from a ver-
tex hierarchy, before describing our clustering algorithm. We have
chosen oriented bounding boxes (OBBs) as our bounding volume
because they can provide a tighter fit than spheres or axis aligned
bounding boxes [Gottschalk et al. 1996]. OBBs require more com-
putation than simpler bounding volumes, but clustering is a prepro-
cess that is performed once per environment.

Initially we consider issues in generating clusters that are not
directly descended from each other; that is, they come from dif-
ferent branches of the cluster hierarchy. Such clusters should have
minimal overlap in their bounding volumes for two reasons. First,
highly interpenetrating clusters are unlikely to occlude each other.
Second, when rendering their bounding volumes, the required fill-
rate is higher when they overlap. However, a parent cluster’s bound-
ing box should fully contain the bounding box of its children so that
when it is deemed fully occluded, the subtree rooted at that cluster
may be skipped. We also want to control the number of vertices
and faces in a cluster so that we have uniformly sized occluders and
occludees.

For occlusion culling it is desirable to have only one active clus-
ter in a region of the mesh. If clusters have low error ratios, it is
likely that multiple clusters will have to be active in a mesh region.
On the other hand, a cluster that has a high error ratio will contain
vertices spanning many levels of the hierarchy in its mesh region.
In this case, few of the vertices contained in a cluster will be active
from any given viewpoint. Therefore, we must balance the error
ratio of clusters. Also, the error range of a cluster should not over-
lap with its parent or children. Otherwise, it is likely that they will
contain active vertices simultaneously.

These properties for the clusters can be summarized as:

1. Minimal overlap of bounding boxes of clusters not directly
descended from each other.

2. The bounding box of a cluster is fully contained within its
parent bounding box.

3. Minimal or no overlap of error range between parent and chil-
dren clusters.

4. The error ratio is not too small or too large for a cluster.
5. The vertex and face count within a cluster are neither very

large nor very small.

4.2 Cluster Hierarchy Generation
Our clustering algorithm works directly on an input vertex hierar-
chy without utilizing a spatial subdivision such as an octree. We
assume that the vertex hierarchy from which the cluster hierarchy
is generated exhibits high spatial coherence and is constructed in a
bottom-up manner using edge collapses or vertex merges.

A cluster hierarchy can be generated by either using a bottom-
up or top-down approach. A benefit of the bottom-up approach is
spatial localization, but we assume that the vertex hierarchy already
has this property. The top-down approach enables us to minimize
the overlap of cluster bounding boxes. For this reason, we have
chosen the top-down approach.

We descend the vertex hierarchy from the roots while creating
clusters. An active vertex front is maintained and vertices on the
front are added to clusters. When a vertex is added to a cluster, it
is removed from the front and replaced with its children. We do
not add a vertex to a cluster if it cannot be split in a fold-over safe
manner. Thus, the construction of such a cluster will have to wait
until dependent vertices are added to other clusters. For this reason,
we use a cluster queue and place a cluster at the back of the queue
when we attempt to add a vertex that is not fold-over safe. Then,
the cluster at the front of queue is processed.

Figure 2: Construction of the Cluster Hierarchy : On the left is
the input vertex hierarchy. The vertices are colored based on the
cluster to which they are assigned. The nodes drawn with dotted
lines represent the candidate vertices for the clusters, which reside
in the vertex priority queue. The two clusters within dotted circles
are still in the cluster queue, while the cluster inside the solid circle
is finished processing.

Each cluster in this cluster queue has an associated vertex prior-
ity queue sorted based on error values. A cluster’s vertex queue
contains its candidate vertices on the active front. Initially, the
cluster queue contains a single cluster. The vertex priority queue
associated with this initial cluster contains the roots of the vertex
hierarchy. Since candidate vertices within a cluster are processed
in order of decreasing error value, it is never the case that a vertex
split is dependent upon a split in its own vertex queue.

While the cluster queue is not empty the following steps are per-
formed:

1. Dequeue the cluster, C, at the front of the cluster queue.
2. Dequeue the vertex, v, with highest error from the vertex pri-

ority queue.
3. If splitting v is not fold-over safe, return it to the vertex pri-

ority queue, place C at the back of the cluster queue and go
back to Step 1.

4. If adding v to C makes the error ratio of C too large or in-
creases its vertex count beyond the target:

(a) Create two children clusters Cl and Cr of C in the clus-
ter queue.

(b) Partition the vertex priority queue and assign the two
resulting queues to Cl and Cr .

(c) Go back to Step 1 without placing C in the back of the
cluster queue; no more vertices will be added to this
cluster.

5. Add v to C, update the number of vertices and the error ratio
associated with C.

6. Replace v on the active vertex front by its children and en-
queue the children in the vertex priority queue associated with
C. Go back to Step 2.

This clustering algorithm ensures the properties highlighted in
Section 4.1. Section 4.3 will explain how Property 1 is enforced
when a cluster is partitioned. Property 3 is maintained by our algo-
rithm as the vertices are inserted into the clusters from the vertex
priority queue in order of decreasing error, so that children clusters
always contain vertices with less associated error than their parent
cluster. Properties 4 and 5 cause the clusters to be split as the pro-
cedure traverses down the vertex hierarchy in Step 4.

Property 2 is enforced in a second pass after clustering by a
bottom-up traversal which computes each parent cluster’s bound-
ing box by taking the union of its children. An example of a simple
cluster hierarchy that is generated from vertex hierarchy is shown in
Figure 2. Figure 3 shows the clusters on a bunny model at runtime.
4.3 Partitioning a Cluster
In Step 4(b) of the cluster generation algorithm, it is necessary to
divide a cluster by splitting its vertex priority queue. The two re-
sulting vertex priority queues form the initial vertex priority queues
for the two children clusters.

To partition a cluster we compute a splitting plane for the vertices
in the queue using principal component analysis. The eigenvector

Figure 3: The clusters of the bunny model are shown in color. Clus-
ters at 0 pixels of error are on the left and at 4 pixels of error are on
the right.

associated with the largest eigenvalue is initially used to define a
splitting plane through the centroid of the vertices to maximally
separate the geometry [Jolliffe 1986]. The vertices and associ-
ated faces are divided based on this splitting plane, and an oriented
bounding box is computed that contains the faces of each cluster.
Bounding boxes are oriented with the splitting plane.

Some faces have a vertex in each of the newly created priority
queues. As a result, their bounding boxes can overlap. This overlap
can be very large when the cluster being split contains long, skinny
triangles. Let V be the volume of the bounding box of the parent
node and V0 and V1 be the volumes of the children bounding boxes.
We use (V1 +V2 −V) as a measure of the overlap of the children’s
bounding boxes. If this value exceeds a threshold fraction of V then
the overlap is too large. In this case, the eigenvector corresponding
to the second largest eigenvalue is used to define a new splitting
plane. If this split again fails the overlap test, the third eigenvector
is used. If all three fail, then we enforce Property 1 by abandoning
the split and keeping the parent cluster in the cluster queue and
increase either the target vertex count or the error ratio.
4.4 Memory Localization
After assigning vertices to clusters, we store the vertices in their
corresponding clusters along with their associated faces. Perform-
ing this memory localization is useful for rendering using vertex ar-
rays and on demand loading of clusters at runtime. Also, memory
accesses when processing a cluster are more likely to be localized.

However, the vertices of a triangle can reside in different clus-
ters. This is unavoidable in practice, no matter how the vertices
are partitioned among different clusters. We deal with this situa-
tion by assigning each triangle to a single cluster containing at least
one of its vertices. The cluster must store all three vertices of any
triangle assigned to it, leading to some duplication of vertex data.
Note, however, that only the data necessary to render such vertices
is duplicated. The vertex hierarchy relationships are stored for each
vertex only in the cluster to which they were assigned during cluster
generation.
5 Interactive Display
In this section we present the runtime algorithm that uses the vertex
and cluster hierarchy to update the active mesh for each frame and
to perform occlusion culling. First, we present algorithms for model
refinement followed by occlusion culling.
5.1 View-Dependent Model Refinement
In our algorithm the active vertex front or list and active face list,
defined in Section 3.2, are divided among the clusters so that each
cluster maintains its own portion of the active lists. Only clusters
that contain vertices on the active front need to be considered during
refining and rendering. These clusters are stored in an active cluster
list. Figure 4 shows a cluster hierarchy, its active cluster list, and
active vertex lists.

Prior to rendering a cluster, its active face and vertex lists are up-
dated to reflect viewpoint changes since the last frame. We traverse
its active vertex list and use the aforementioned vertex error value
to compute which vertices need to be split or collapsed. The error
value is projected onto the screen and used as a bound on the de-
viation of the surface in screen pixels. Vertex splits are performed
recursively on front vertices that do not satisfy the bound. For sib-
ling pairs that meet the error bound, we recursively check whether
their parent vertex also meets the error bound and if so, collapse the
edge (or virtual edge) between the vertex pair.

Figure 4: The cluster hierarchy is used at runtime to perform occlu-
sion culling. On the left, the active cluster list is drawn as a front
across the cluster hierarchy. This list is composed of visible clusters
and occluded clusters. Each cluster contains a portion of the vertex
hierarchy as seen on the right. A subset of vertices in active clusters
make up the current mesh. These are shaded on the right.

Faces in the active face list adjacent to a vertex involved in ei-
ther an edge collapse or vertex split are replaced with faces adjacent
to the new vertex. When a vertex is to be split, we use the neigh-
borhood test to determine whether the vertex split is fold-over safe.
However, vertex splits must occur to satisfy the error bound. To
allow a split, we force any of its neighboring vertices to split when
they are not part of the stored neighborhood as in [Hoppe 1997].

5.2 Maintaining the Active Cluster List
A vertex that is split may have children that belong to a different
cluster. The children vertices are activated in their containing clus-
ters and these clusters are added to the active cluster list if they were
not previously active. Similarly, during an edge collapse operation,
the parent vertex is activated in its containing cluster and that cluster
is added to the active cluster list. When the last vertex of a cluster
is deactivated, the cluster is removed from the active cluster list.

5.3 Rendering Algorithm
Our rendering algorithm exploits frame-to-frame coherence in oc-
clusion culling, by using the visible set of clusters from the previ-
ous frame as the occluder set for the current frame. The algorithm
proceeds by rendering the occluder set to generate an occlusion rep-
resentation in the depth-buffer. Then, it tests all the clusters in the
active cluster list for occlusion. Meanwhile, the occluder set is up-
dated for the next frame. An architecture of the runtime algorithm is
shown in Figure 5. Different phases of the algorithm are numbered
in the upper left of each box.

5.3.1 Occlusion Representation Generation
We use clusters that were visible in the previous frame for comput-
ing an occlusion representation. Before generating the representa-
tion, the active vertex list and active face list in each of these clus-
ters are updated to meet the error bound. This refinement occurs as
described in Section 5.1. This is Phase 1 of our algorithm. In Phase
2, the active faces are rendered and the resulting depth map is used
as an occlusion representation.

5.3.2 Occlusion Tests
We traverse the active cluster list and cull clusters that are occluded
or outside the view-frustum in Phase 3. The visibility of a cluster
within the view frustum is computed by rendering its bounding box
and then using a hardware occlusion query to determine whether
any fragments passed the depth test. Depth writes are disabled dur-
ing this operation to ensure that the bounding boxes are not used
as occluders. Also, depth clamping is enabled so that we do not
need to consider special case bounding boxes that are intersecting
the near clip plane. The active vertex front may pass through a clus-
ter and some of its descendant clusters. Since the bounding box of
a cluster fully contains the bounding boxes of its children, once a
cluster is found to be occluded we do not have to check its children.

During this phase, all the clusters in the active cluster list are
tested, including those in the occluder set. This test is necessary
because the clusters that pass the visibility test are used as occlud-
ers for the subsequent frame. In this manner, clusters that become
occluded are removed from the occluder set.

Figure 5: Runtime System Architecture: In each frame the clusters
visible in the previous frame are used as an occluder set. In Phases
1 and 2, the occluder set is refined and then rendered to create a
depth map in the z-buffer. Phase 3 tests bounding boxes of all the
active clusters against this depth map using occlusion queries. The
clusters passing the test are refined and rendered in Phases 4 and 5
and also used as occluders for the next frame.

5.3.3 Refining Visible Clusters
The previous phase allows us to determine which clusters are po-
tentially visible. Before rendering the potentially visible clusters in
Phase 5, their active face and vertex lists must be updated in Phase
4. While refining, additional clusters may be added to the active
cluster list through vertex splits and edge collapses. These clusters
are assumed to be visible in the current frame.

5.4 Conservative Occlusion Culling
The bounding box test conservatively determines whether the ge-
ometry within a cluster will be occluded, since a bounding box
contains all the faces associated with a cluster. We also ensure con-
servativeness up to screen-space precision by refining the occluder
set in Phase 1 before generating the depth map in Phase 2.

To prevent refining and rendering the same cluster two times dur-
ing a frame, the occluder set rendered in Phase 2 is also rendered
into the color buffer. Then, when refining and rendering the visible
clusters in Phases 4 and 5, we omit the clusters that were already
refined and rendered in Phases 1 and 2. This optimization requires
an extra step to ensure conservativeness.

As explained in Section 5.1, the neighborhood vertices may be
forced to split to satisfy the error bound. A problem arises when a
vertex split in Phase 4 forces a vertex in a cluster already rendered
in Phase 2 to split. We detect such cases and redraw the resulting
faces, so that no visual artifacts remain in the final image. We reren-
der the affected faces prior to the split into the stencil buffer after
setting the depth function to GL EQUAL. After the split, the cor-
rect faces are rendered and overwrite pixels where the stencil has
been set. We have found that this occurs very rarely (on average
less than one face per frame in our datasets).

5.5 Vertex Arrays
On current graphics processors display lists and vertex arrays are
significantly faster than immediate mode rendering [Woo et al.
1997]. The changing nature of the visible primitives and dynam-
ically generated LODs in a VDR system are not well suited for
display lists. Thus, we use vertex arrays stored in the graphics pro-
cessor unit (GPU) memory to accelerate the rendering.

We use a memory manager when the size of the vertices in the ac-
tive clusters is less than the amount of the memory allocated on the
GPU (e.g. 100 MB). Using a least recently used replacement pol-
icy, we keep the vertices in GPU memory over successive frames.
When the front size exceeds the memory requirement, we still use
GPU memory, but do not attempt to keep clusters in this memory
for more than one frame.

In many rendering applications all or most of the vertices in a
vertex array are used to render faces. But in our case only a fraction
of the vertices for a cluster, the active vertices, are used for render-
ing. This increases the number of bytes per rendered vertex that
are transferred to the GPU when using vertex arrays stored in GPU
memory. To obtain maximum throughput, we use a minimum ratio
of active vertices to total vertices, and any active cluster that does
not meet this threshold is rendered in immediate mode.

Model Poly×106 Obj Cluster×103

Isosurface model 2.4 1 1.3
Power Plant 12.2 1200 20.1

Table 1: Details of our test environments. Poly is the polygon
count. The Obj column lists the number of objects in the original
dataset and the Cluster column lists number of clusters generated.

6 Implementation and Results
In this section we discuss some of the details of our implementation
and highlight its performance on two complex environments.

6.1 Implementation
We have implemented our view-dependent rendering algorithm
with conservative occlusion culling on a 2.8 GHz Pentium-IV PC,
with 4 GB of RAM and a GeForce 4 Ti 4600 graphics card. It
runs Linux 2.4 with the bigmem option enabled giving 3.0 GB
user addressable memory. Using the NVIDIA OpenGL extension
GL NV occlusion query, we are able to perform an average of ap-
proximately 100K occlusion queries per second on the bounding
boxes.

For higher performance, we allocate 100MB of the 128MB of
RAM on the GPU to store the cluster vertices and bounding boxes.
The memory allocated on the graphics card can hold about 3.5 mil-
lion vertices.

6.2 Environments
Our algorithm has been applied to two complex environments, a
coal fired power plant composed of more than 12 million polygons
and 1200 objects (shown in Fig. 1) and an isosurface model con-
sisting of 2.4 million polygons and a single object (shown in Fig.
6). The details of these environments are shown in Table 1.

We use GAPS [Erikson and Manocha 1999] to construct our ver-
tex hierarchies because it handles non-manifold geometry and can
also perform topological simplification. Because the GAPS algo-
rithm requires large amounts of memory, we built hierarchies for
portions of each environment separately and merged the results to
compute a single vertex and cluster hierarchy. A target of 1000
vertices is used while generating the clusters. The maximum error
value of any vertex in the cluster is twice that of the minimum; that
is, the error ratio is 2.

Our approach is designed for complex environments consisting
of tens of millions of polygons. Partial loading can be very useful
in such an environment. We decouple the vertex and face data from
the edge collapse hierarchy stored in each cluster as described in
Section 4.4. We do not load the face and vertex data for a cluster
until it needs to be rendered. In this manner, clusters that never
fall within the view-frustum or are always occluded will never be
loaded when performing a walkthrough.

6.2.1 Preprocessing Time and Memory Requirements
Our cluster hierarchy generation algorithm can process about 1M
vertices in 3.8 minutes. Almost 18% of that time is spent calcu-
lating the eigenvectors computed for principal component analy-
sis when splitting clusters and determining OBBs. We optionally
employ a step that attempts to tighten the OBBs by minimizing
their volume while still enclosing the clusters. When this step is
used, the time spent in cluster generation increases by ten times;
the bounding box computation accounts for 90% of the time spent
in the clustering step. We performed the minimization step during
cluster generation for the power plant model and not for the isosur-
face model.

Our current implementation is not optimized in terms of mem-
ory requirements. Each cluster uses 300 bytes to store the bounding
box information and other data. Each vertex and face has a 4 byte
pointer indicating its containing cluster along with the geometric
data. On average, we use 272Mb for 1M vertices. This number is
slightly higher in comparison with some earlier systems for view-
dependent rendering. For example, Hoppe’s view-dependent sim-
plification system [Hoppe 1997] reported 224Mb for 1M vertices.
The difference partly exists because our implementation supports
virtual edges and non-manifold topology, which means some rela-
tionships cannot be stored implicitly.

Figure 6: Isosurface model acquired from turbulence simulation.
This environment consists of 2.4 million triangles and is rendered
by our system at interactive rates.

6.3 Optimizations
We use a number of optimizations to improve the performance of
our algorithms.

6.3.1 Conservative Projected Error
When traversing the active vertex list of a cluster we use a conser-
vative approximation of the distance from a vertex to the viewpoint.
The minimum distance between a sphere surrounding a cluster and
the viewpoint is computed. Then, the maximum surface deviation
meeting the screen space error bound at this distance is calculated
and all active vertices in the cluster are refined using this value.
This approximation is conservative and requires only one compari-
son per vertex to determine whether it needs to be split or collapsed.

6.3.2 Multiple Occlusion Queries
The GL NV occlusion query extension supported on the GeForce
3 and all subsequent NVIDIA GPUs allows many queries to be per-
formed simultaneously. To get the result of a query, all rasterization
prior to issuing the query must be completed. Thus, we wait until
we have rendered all the bounding boxes in the active cluster list
before gathering query results from the GPU.

6.4 Results
We generated paths in each of our environments and used them to
test the performance of our algorithm. These paths are shown in
the accompanying video. We are able to render both these models
at interactive rates (10 − 20 frames per second) on a single PC.

We have also compared the performance of our system to VDR
without occlusion culling. We accomplish this comparison by dis-
abling occlusion culling in our system, which involves simply refin-
ing and rendering all the clusters in the active cluster list. Moreover,
we do not use the conservative approximation of the error distance,
since this optimization is possible because of clustering used for
occlusion culling. We use view-frustum culling, vertex arrays, and
GPU memory to accelerate the rendering of the scene in each case.
Figure 8 illustrates the performance of the system on a complex
path in the power plant and isosurface model. Notice that we are
able to obtain a 3 − 5 times speedup with conservative occlusion
culling. Table 2 shows the average frame rate, front size, and num-
ber of edge collapse and vertex split operations performed during
the path. The main benefit of occlusion culling arises from the re-
duction in the size of the front (by a factor of one third to one half)
as well as the number of rendered polygons. Tables 3 and 4 show a
breakdown of the time spent on the major tasks (per frame) in our
system. Due to occlusion culling, the resulting front size and the
time spent in refining the front is considerably smaller and yields
improved performance. Note that our improvement in refining is
even more dramatic than the improvement in rendering due to the

Figure 7: Occlusion culling in the Power Plant. The left image shows a first person view. The middle image shows a third person view with
the bounding boxes of visible clusters shown in pink and the view frustum in white. The right image is from the same third person view with
the bounding boxes of occluded clusters in yellow.

Pixels of FPS Front Verts (K) Merge/Split Poly (K) Visible VF culled OC culled
Model Error VDR VDR+OC VDR VDR+OC VDR VDR+OC VDR VDR+OC clusters in VDR+OC

Isosurface model 0.5 6.4 19.7 195 113 2356 1222 311 224 349 106 299
PP 3 2.62 12.3 297 126 1973 559 433 162 1166 390 1852

Table 2: Average frame rates and average number of split and merge operations obtained by different acceleration techniques over the sample
path. This result is acquired at 512 × 512 image resolution. FPS = Frames Per Second, Poly = Polygon Count, PP = Power Plant model,
VDR = View-dependent Rendering with view frustum culling, VF = View Frustum, OC = Occlusion Culling

conservative distance computation. Figure 7 shows visible and in-
visible clusters in a given viewpoint on the power plant model.

6.5 Comparison with Earlier Approaches
To the best of our knowledge, none of the earlier algorithms
can perform view-dependent rendering with conservative occlusion
culling. The iWalk system [Correa et al. 2002] can also render
the power plant model on a single PC with much smaller prepro-
cessing and memory overhead than ours. However, it does not use
LODs and performs approximate and non-conservative occlusion
culling. The GigaWalk [Baxter et al. 2002] and occlusion-switch
algorithms [Govindaraju et al. 2003b] use static LODs with occlu-
sion culling. Although they can render the power plant model at in-
teractive rates, they can produce popping due to switching between
different LODs. Furthermore, they use more than one graphics pro-
cessor.

An integrated algorithm combining view-dependent rendering
with PLP-based approximate occlusion culling is presented in [El-
Sana et al. 2001]. Finally, [El-Sana and Bachmat 2002] have pre-
sented a scheme for subdividing the vertex hierarchy at runtime to
generate a coarser hierarchy. The cells of this hierarchy are split and
merged to reflect the changes in the active front of vertices. These
cells are prioritized by an estimate of the number of vertex splits
and edge collapses required in each cell. Refinement occurs over a
subset of the active cells in each frame, considering the priority as
well as ensuring that all cells are eventually refined. Our algorithm
follows the same theme of reducing the front size and therefore,
subdivides the vertex hierarchy into clusters as a preprocess. As a
result, our algorithm is applicable to very large environments and
the resulting clusters are used for occlusion culling.

6.6 Limitations
Our occlusion culling algorithm assumes high temporal coherence
between successive frames. If the camera position changes signif-
icantly from one frame to the next, the visible primitives from the
previous frame may not be a good approximation of the occluder
set for the current frame. As a result, the culling performance may
suffer. Furthermore, if a scene has very little or no occlusion, the
additional overhead of performing occlusion queries can lower the
frame rate.

Our algorithm performs culling at a cluster level and does not
check the visibility of each triangle. As a result, its performance
can vary based on how the clusters are generated and represented.

7 Conclusion and Future Work
We have presented a novel algorithm for integrating view-
dependent rendering with conservative occlusion culling. Our al-
gorithm performs clustering and partitioning to decompose a vertex
hierarchy of the entire scene into a cluster hierarchy, which is used

Step Refining Rendering Culling
VDR+OC 17ms (34%) 20ms (38%) 14ms (28%)

VDR 136ms (81%) 31ms (19%) −

Table 3: A breakdown of the frame time in isosurface model. Left
values in each cell represent time spent in each step. Right values
represent percentage of total frame time. The Refining column rep-
resents Phase 1 and 4, Rendering is Phase 2 and 5, and Culling is
Phase 3.

Step Refining Rendering Culling
VDR+OC 23ms (28%) 27ms (33%) 31ms (39%)

VDR 213ms (56%) 169ms (44%) −

Table 4: A breakdown of the frame time in Power Plant. The
columns Refining, Rendering, and Culling are explained in Table
3

for view-frustum and occlusion culling. At runtime, a potentially
visible set of clusters is maintained using hardware accelerated oc-
clusion queries, and this set is refined in each frame. The cluster
hierarchy is also used to update the active vertex front that is tra-
versed for view-dependent refinement. Our algorithm easily allows
the use of vertex arrays to achieve high triangle throughput on mod-
ern graphics cards. We have observed 3 − 5 times improvement in
frame rate over view-dependent rendering without occlusion culling
on two complex environments.

Many avenues for future work lie ahead. To apply our approach
to even larger environments, we would like to develop an out-of-
core clustering and partitioning algorithm based on out-of-core sim-
plification and generation of the vertex hierarchy. Our load on de-
mand approach can be extended to create an out-of-core runtime
system. Our clustering algorithm could be extended to consider
view-dependent effects such as specular highlights and silhouettes
that are important in environments with significant surface detail.
In particular, it can be used for interactive shadow generation in
complex environments [Govindaraju et al. 2003a]. We would like
to explore other applications of the cluster hierarchy, including col-
lision detection.

Acknowledgments
Our work was supported in part by ARO Contract DAAD19-02-1-
0390, NSF awards ACI 9876914 and ACR 0118743, ONR Contract
N00014-01-1-0067 and Intel.

The isosurface model is courtesy of the LLNL ASCI VIEWS
Visualization project. The power plant environment is courtesy of
an anonymous donor. We would like to thank Peter Lindstrom for
processing the isosurface model, and the members of UNC Walk-
through group for their useful discussions and support.

(a) Isosurface model at 0.5 pixel of error (b) Power plant model at 3 pixels of error
Figure 8: Frame rate comparison between VDR with and without occlusion culling. Image resolution is 512 × 512. We obtain a 3 − 5 times
improvement in the frame rate when using occlusion culling.

References
AIREY, J., ROHLF, J., AND BROOKS, F. 1990. Towards image realism with interactive

update rates in complex virtual building environments. In Symposium on Interactive
3D Graphics, 41–50.

ALIAGA, D., COHEN, J., WILSON, A., ZHANG, H., ERIKSON, C., HOFF, K.,
HUDSON, T., STUERZLINGER, W., BAKER, E., BASTOS, R., WHITTON, M.,
BROOKS, F., AND MANOCHA, D. 1999. Mmr: An integrated massive model
rendering system using geometric and image-based acceleration. In Proc. of ACM
Symposium on Interactive 3D Graphics.

BARTZ, D., MEIBNER, M., AND HUTTNER, T. 1999. Opengl assisted occlusion
culling for large polygonal models. Computer and Graphics 23, 3, 667–679.

BAXTER, B., SUD, A., GOVINDARAJU, N., AND MANOCHA, D. 2002. Gigawalk:
Interactive walkthrough of complex 3d environments. Proc. of Eurographics Work-
shop on Rendering.

COHEN-OR, D., CHRYSANTHOU, Y., SILVA, C., AND DURAND, F. 2003. A survey
of visibility for walkthrough applications. IEEE Transactions on Visualization and
Computer Graphics. To Appear.

COORG, S., AND TELLER, S. 1997. Real-time occlusion culling for models with
large occluders. In Proc. of ACM Symposium on Interactive 3D Graphics.

CORREA, W., KLOSOWSKI, J., AND SILVA, C. 2002. iwalk: Interactive out-of-core
rendering of large models. In Technical Report TR-653-02, Princeton University.

DECORO, C., AND PAJAROLA, R. 2002. Xfastmesh: View-dependent meshing from
external memory. In IEEE Visualization.

EL-SANA, J., AND BACHMAT, E. 2002. Optimized view-dependent rendering for
large polygonal dataset. IEEE Visualization, 77–84.

EL-SANA, J., AND VARSHNEY, A. 1999. Generalized view-dependent simplification.
Computer Graphics Forum, C83–C94.

EL-SANA, J., SOKOLOVSKY, N., AND SILVA, C. 2001. Integrating occlusion culling
with view-dependent rendering. Proc. of IEEE Visualization.

ERIKSON, C., AND MANOCHA, D. 1999. Gaps: General and automatic polygon
simplification. In Proc. of ACM Symposium on Interactive 3D Graphics.

FUNKHOUSER, T., KHORRAMABADI, D., SEQUIN, C., AND TELLER, S. 1996. The
ucb system for interactive visualization of large architectural models. Presence 5,
1, 13–44.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. 2001. Hierarchical face clus-
tering on polygonal surfaces. Tech. rep., Proc. of 2001 Symposium on Interactive
3D Graphics, Mar.

GOTTSCHALK, S., LIN, M., AND MANOCHA, D. 1996. OBB-Tree: A hierarchical
structure for rapid interference detection. Proc. of ACM Siggraph’96, 171–180.

GOVINDARAJU, N., LLOYD, B., YOON, S., SUD, A., AND MANOCHA, D. 2003.
Interactive shadow generation in complex environments. Proc. of ACM SIG-
GRAPH/ACM Trans. on Graphics.

GOVINDARAJU, N., SUD, A., YOON, S., AND MANOCHA, D. 2003. Interactive
visibility culling in complex environments with occlusion-switches. Proc. of ACM
Symposium on Interactive 3D Graphics.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical z-buffer visibility. In
Proc. of ACM SIGGRAPH, 231–238.

GREENE, N. 2001. Occlusion culling with optimized hierarchical z-buffering. In ACM
SIGGRAPH COURSE NOTES ON VISIBILITY, # 30.

HILLESLAND, K., SALOMON, B., LASTRA, A., AND MANOCHA, D. 2002. Fast and
simple occlusion culling using hardware-based depth queries. Tech. Rep. TR02-
039, Department of Computer Science, University of North Carolina.

HOPPE, H. 1996. Progressive meshes. In Proc. of ACM SIGGRAPH, 99–108.

HOPPE, H. 1997. View dependent refinement of progressive meshes. In ACM SIG-
GRAPH Conference Proceedings, 189–198.

HUDSON, T., MANOCHA, D., COHEN, J., LIN, M., HOFF, K., AND ZHANG, H.
1997. Accelerated occlusion culling using shadow frusta. In Proc. of ACM Sympo-
sium on Computational Geometry, 1–10.

JOLLIFFE, I. 1986. Priciple component analysis. In Springer-Veriag.

KLOSOWSKI, J., AND SILVA, C. 2000. The prioritized-layered projection algorithm
for visible set estimation. IEEE Trans. on Visualization and Computer Graphics 6,
2, 108–123.

KLOSOWSKI, J., AND SILVA, C. 2001. Efficient conservative visiblity culling us-
ing the prioritized-layered projection algorithm. IEEE Trans. on Visualization and
Computer Graphics 7, 4, 365–379.

LINDSTROM, P. 2003. Out-of-core construction and visualization of multiresolution
surfaces. In ACM Symposium on Interactive 3D Graphics.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent simplification of arbitrary
polygon environments. In Proc. of ACM SIGGRAPH.

LUEBKE, D., AND GEORGES, C. 1995. Portals and mirrors: Simple, fast evaluation
of potentially visible sets. In ACM Interactive 3D Graphics Conference.

MEISSNER, M., BARTZ, D., HUTTNER, T., MULLER, G., AND EINIGHAMMER, J.
2002. Generation of subdivision hierarchies for efficient occlusion culling of large
polygonal models. Computer and Graphics.

PAJAROLA, R. 2001. Fastmesh: Efficient view-dependent mesh. In Proc. of Pacific
Graphics, 22–30.

SCHAUFLER, G., DORSEY, J., DECORET, X., AND SILLION, F. 2000. Conservative
volumetric visibility with occluder fusion. Proc. of ACM SIGGRAPH, 229–238.

SCOTT, N., OLSEN, D., AND GANNETT, E. 1998. An overview of the visualize fx
graphics accelerator hardware. The Hewlett-Packard Journal, 28–34.

SILLION, F. 1994. Clustering and volume scattering for hierarchical radiosity calcu-
lations. In Fifth Eurographics Workshop on Rendering, 105–117.

TELLER, S. J. 1992. Visibility Computations in Densely Occluded Polyheral Environ-
ments. PhD thesis, CS Division, UC Berkeley.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000. Visibility preprocessing
with occluder fusion for urban walkthroughs. In Rendering Techniques, 71–82.

WONKA, P., WIMMER, M., AND SILLION, F. 2001. Instant visibility. In Proc. of
Eurographics.

WOO, M., NEIDER, J., AND DAVIS, T. 1997. OpenGL Programming Guide, Second
Edition. Addison Wesley.

XIA, J., EL-SANA, J., AND VARSHNEY, A. 1997. Adaptive real-time level-of-detail-
based rendering for polygonal models. IEEE Transactions on Visualization and
Computer Graphics 3, 2 (June), 171–183.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. 1997. Visibility culling
using hierarchical occlusion maps. Proc. of ACM SIGGRAPH.

