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Abstract

We present techniques for fast motion planning by

using discrete approximations of generalized Voronoi

diagrams, computed with graphics hardware. Ap-

proaches based on this diagram computation are appli-

cable to both static and dynamic environments of fairly

high complexity. We compute a discrete Voronoi dia-

gram by rendering a three-dimensional distance mesh

for each Voronoi site. The sites can be points, line seg-

ments, polygons, polyhedra, curves and surfaces. The

computation of the generalized Voronoi diagram pro-

vides fast proximity query toolkits for motion planning.

The tools provide the distance to the nearest obstacle

stored in the Z-bu�er, as well as the Voronoi bound-

aries, Voronoi vertices and weighted Voronoi graphs

extracted from the frame bu�er using continuation

methods. We have implemented these algorithms and

demonstrated their performance for path planning in a

complex dynamic environment composed of more than

140,000 polygons.

1 Introduction

Motion planning is one of the fundamental problems

in robotics and automation. Most of the earlier work

has focussed on the classical Piano Mover's problem.

Besides robotics, this problem also arises in motion

control and planning of digital actors or autonomous

agents [KKKL94] in computer animation, maintain-

ability study in virtual prototyping [CL95], drug de-

sign [FKL+97] and robot-assisted medical surgery

[STK+94, TAL99]. This problem has been well stud-

ied for decades and a number of algorithms have been

proposed. Most of them can be classi�ed into global or

local methods. Some of the well-known approaches in-

clude roadmap algorithms, exact and approximate cell-

decomposition, and potential �eld methods [Lat91].

1.1 Related Work

Several algorithms have been proposed based on gener-

alized Voronoi diagrams [CD87, �OSY83, CB94, CB95a,

CB95b, CB96, CKR97a, CKR97b, CMB97, Cho97,

KC97, SAW99b, SAW99a]. The underlying idea is

that the boundaries of generalized Voronoi diagrams or

simpli�ed Voronoi diagrams provide paths of maximal

clearance between the robot and the obstacles. This

characteristic of the paths generated by Voronoi-based

algorithms is similar to those generated by the poten-

tial �eld based roadmap methods [BL91, CL90, CL93,

Lat91]. However, due to the practical complexity of

computing generalized Voronoi diagrams, the applica-

tions of such planners have been limited to environ-

ments composed of a few simple obstacles.

Our approach also treats Voronoi diagrams as paths

of maximal clearance. However, we accelerate the

computation by designing algorithms that make use

of graphics hardware. Polygon rasterization graph-

ics hardware has been used in geometric computation

[GMTF89, RMS92, RR86, HCK+99a], as well as in

motion planning for constructing con�guration space

[LRDG90]. Our method imposes no restrictions on

input size or primitive type, is e�cient for real-time

planning in dynamic environments, and is easy to im-

plement. Though the computation is discrete, we enu-

merate all sources of errors and generate output within

any speci�ed tolerance.



1.2 Main Contribution

In this paper, we present techniques for real-time mo-

tion planning that use a discrete approximation of the

generalized Voronoi diagram computed with graphics

hardware. We show how to utilize rasterization hard-

ware to compute the following information for path

planning in complex, dynamic environments at inter-

active rates:

� Approximate distance functions with bounded er-

ror, suitable for not only classical motion planning

in a static environment, but also for planning in a

dynamic environment and for sensor-based plan-

ning.

� Voronoi neighbors, Voronoi boundaries and

Voronoi vertices, used to identify potential paths

with important \junction points" or \meet points"

to ensure the correct topological connection of

paths

� Color and distance bu�ers to provide \weights"

for all Voronoi edges. These values can be further

used to estimate potential \narrow" passages in

con�guration space, reduce the search space, es-

tablish milestones, bias certain paths based on the

clearance of the paths or other constraints, etc.

We demonstrate their e�ectiveness with our proto-

type implementation of a potential �eld based planner

in a three-dimensional con�guration space. We show

that it is feasible to plan motions of autonomous robots

based on generalized Voronoi diagrams for highly com-

plex environments composed of hundreds of thousands

of primitives in real-time. Our approach is comple-

mentary to other techniques proposed for computing

roadmaps. However, this technique is simple to im-

plement and uses graphics hardware capabilities to

achieve interactive performance.

1.3 Organization

The rest of the paper is organized as follows: In Sec-

tion 2, we describe an overview of our approach. Sec-

tion 3 presents our algorithm for computing general-

ized Voronoi diagram using graphics hardware. Section

4 discusses the use of the discrete generalized Voronoi

diagram for motion planning. We demonstrate our pro-

totype system implementation in Section 5. Finally, we

conclude with future research directions.

2 Algorithm Overview

In this section, we brie
y describe the basic ideas of our

approach. We give an overview of generalized Voronoi

diagrams and polygon rasterization hardware. Next,

we summarize how we accelerate the computation of

generalized Voronoi diagrams with graphics hardware

and use them for motion planning.

2.1 Generalized Voronoi Diagram

Let the set of input sites be denoted as s1; s2; : : : ; sn.

For each site si, de�ne a distance function di(x) =

dist(si;x). The Voronoi region of si is the set Vi =

fx j di(x) � dj(x) 8j 6= ig.

The collection of regions V1; : : : ; Vn is called the gen-

eralized Voronoi diagram or GVD, which partitions the

space into cells suitable for proximity queries.

The (ordinary) Voronoi diagram corresponds to the

case when each si is an individual point. The bound-

aries of the regions Vi are called Voronoi boundaries,

which are loci of points equidistant to at least two

sites. The Voronoi vertices are locations equidistant

to at least three Voronoi sites. For sites such as points,

lines, polygons, and splines, the Voronoi boundaries are

portions of algebraic curves or surfaces.

2.2 Graphics Rasterization Hardware

Graphics hardware is becoming easily available, and

is often provided with desktop computers. To take ad-

vantage of advances in hardware development, we make

use of standard Z-bu�ered raster graphics hardware for

rendering polygons. The frame bu�er stores the at-

tributes (intensity or shade) of each pixel in the image

space; the depth bu�er (Z-bu�er) stores the depth of

every visible pixel. Given the vertices of a triangle,

the rasterization hardware interpolates depth linearly

across the triangle's interior. All raster samples cov-

ered by a triangle have an interpolated depth.

2.3 Key Concept

We compute a discrete Voronoi diagram by rendering

a three-dimensional distance mesh for each site. A site

may be a point, line segment, polygon, polyhedron,

curve, or surface. The 3D polygonal distance mesh is a

bounded-error approximation of a possibly non-linear

distance function over a plane. Each site is assigned a

unique color, and the corresponding distance mesh is

rendered in that color using parallel projection. The

graphics system performs a depth test for each pixel in

order to resolve the visibility of surfaces. The depth

bu�er keeps a running minimum depth as polygons



are rendered. When the minimum depth is updated,

the frame bu�er is also updated with the pixel's color.

Thus, the rasterization provides, for each pixel, the

identity of the nearest site (encoded as a color) and the

distance to that site. The error in the mesh is bounded

to be smaller than the distance between two pixels, in

order to maintain an accurate Voronoi diagram.

2.4 Motion Planning Using GVD

The depth bu�er stores the distance values needed for

many motion planning algorithms. The distance gradi-

ent is easily computed by �nite di�erences. The color

ID for each Voronoi site is used to identify the near-

est neighbors, the Voronoi boundaries, the Voronoi

vertices and the Voronoi graph. By traveling on the

Voronoi boundaries, the robot steers away from all

obstacles. The Voronoi boundaries can also provide

\hints" for sampling the con�guration space for prob-

abilistic roadmap methods. Furthermore, we can use

the distance information to eliminate paths that are

clearly not feasible, or to bias the robot toward regions

of with su�cient clearance or short path length. Since

we compute the Voronoi diagram of the environment

at interactive rates, these techniques are useful for dy-

namic environments where obstacles or other robots

are moving, and for sensor-based planning where the

robot constructs a map of the environment as it ex-

plores.

3 Computing Generalized

Voronoi Diagrams Using

Graphics Hardware

In this section, we describe our approach to compute

GVDs using graphics hardware. More details are given

in [HCK+99b].

In 2D, the distance function for a point is a circular

cone. Our algorithm approximates this cone with a fan

of narrow radial triangles. In this section, we describe

distance functions for points and other site types in

the plane, and also in a planar slice of three-space. We

also present techniques for computing error-bounded

polygonal approximations to these distance functions.

3.1 2D Voronoi Diagrams

For a point in 2D, the conical distance function is ap-

proximated with a fan of radial triangles. The maxi-

mum error in this approximation is at the mesh edge.

In general, the radius of the mesh must be equal to the

diameter of the scene (though in many cases it can be

much shorter). The number of triangles in the mesh is

chosen so as to commit the maximum allowable error �

at the mesh edge. A reasonable value for � is the width

of a pixel in scene coordinates. Under this assumption,

the distance mesh for a point requires 60 triangles for

a 512 � 512 display resolution, or 85 triangles for a

1024� 1024 display resolution.

An open line segment in 2D has a tent-shaped dis-

tance function. Since the function is linear, it can

be meshed without error. The algorithm draws two

quadrilaterals. A polygonal chain in 2D is approxi-

mated by a pair of quadrilaterals for the interior of

each edge, together with a partial cone at each vertex

on its convex side.

3.2 3D Voronoi Diagrams

In 3D, our algorithm computes the Voronoi diagram by

subdividing the 3D space using slices. For each slice,

distance from a site is a function of two variables. The

distance functions are more complex than in the 2D

case. As in 2D, our approach is to mesh the functions

with as few triangles as possible while staying within

some prescribed maximumerror � in terms of deviation.

All the elements of a polyhedron, points, line segments,

and polygons, are considered as separate sites.

For a point in 3D, the distance function over a slice

is one sheet of a hyperboloid of revolution of two sheets.

If the point lies in the slice, the distance function is a

cone as in 2D.

A line in 3D has a distance function that is an ellip-

tical cone. The apex of the cone lies at the intersection

of the line with the slice. The eccentricity of the cone

is determined by the relative angle of the line and the

slice. Our algorithm meshes the section of this cone

that de�nes the distance function of an open line seg-

ment.

A polygon in 3D is analogous to the line-segment

case in 2D: the distance function is linear. It can be

meshed without error by a single mesh cell, or two mesh

cells if the polygon intersects the slice.

Suggested meshing strategies for the point-site case

(hyperboloid) and the line-site case (elliptical cone) are

described in [HCK+99b]. The mesh structure is adap-

tive. The vertex positions are de�ned by entries in a

precomputed table.

3.3 Other Generalizations

So far we have described methods for linear sites. For

a curved site such as a B�ezier curve, the distance func-

tion is a high-degree algebraic function. We tessellate a

B�ezier curve into piecewise linear approximation, and



the tessellation error is added to the error in the dis-

tance function. Bounded-error tessellation methods for

parametric curves and surfaces can be found in [FG87]

and [Kum96].

Our method also generalizes easily to additively-

weighted, multiplicatively-weighted and farthest-site

Voronoi diagrams. Each of these corresponds to a sim-

ple transformation of the distance mesh for a site. Note

that scaling the distance function for a multiplicatively-

weighted diagram also scales the meshing error.

4 Interactive Motion Planning

The computation of a generalized Voronoi diagram us-

ing graphics hardware provides us discrete information

in two bu�ers: the distance bu�er and the frame bu�er.

Both are used for motion planning in a two-dimensional

scene.

4.1 Use of Distance Bu�er

The distance bu�er gives the distance to the nearest

obstacle at each sample point. Distance information is

often used for proximity queries. Potential-�eld motion

planners use a combination of an attractive force to the

goal and a repulsive force away from the obstacles in

order to plan the motion of the robot. The strength

of the repulsive force is normally determined based on

the distance to the nearest obstacle, and the direction

of force is based on the distance gradient.

We begin by computing the discrete Voronoi dia-

gram of the obstacles in the scene. We determine the

repulsive force acting on the robot by examining the

distance bu�er. The distance from a point on the robot

to the nearest obstacle is approximated by interpolat-

ing the distances at robot sample points, and the gra-

dient of the distance is approximated by using �nite

di�erences of the surrounding sample points.

In order to compute the force acting on a robot as

a whole, we sample the robot's geometry. We deter-

mine the repulsive force acting at each sample point

on the robot. Following rigid-body dynamics, we divide

these forces into those acting on the center of mass and

those applying torque. An alternate approach, useful

in con�guration space or for disk robots, is to apply the

force on only the center of mass of the object, ignoring

torque.

Hardware-accelerated Voronoi computation is espe-

cially useful for motion planning in dynamic environ-

ments where no a priori information is available about

the motion of obstacles or multiple mobile robots.

As obstacles move, the distance bu�er is dynamically

recomputed, and the repulsive forces on the robot

Figure 1. A portion of the discrete Voronoi
graph of three sites.

change. In most cases, the robot will avoid the moving

obstacles since the distance to each obstacle is dynam-

ically updated and thus the robot will be pushed away

from the obstacles. In this way, the real-time compu-

tation of robot-to-obstacle distance using the hardware

enables local motion planning through dynamic envi-

ronments.

4.2 Use of Frame Bu�er

In the continuous domain, the Voronoi boundary rep-

resents the set of points that are equidistant from the

two nearest obstacles and the Voronoi vertices are the

points that are equidistant from three or more clos-

est obstacles. A robot which moves along a Voronoi

boundary follows the maximally clear path between

two obstacles. The Voronoi vertices determine the

branching points of these maximally clear paths, pro-

viding alternative paths to the goal. Our method �nds

approximate Voronoi boundaries by analyzing the ren-

dered output in the frame bu�er.

The frame bu�er gives the index of the nearest ob-

stacle to each sample point. A magni�ed discrete

Voronoi diagram is shown in Figure 1. The pixels

are treated as squares tiling the plane. The squares'

sides and corners form a regular 4-valent graph. An

edge of this graph is said to be a member of the dis-

crete Voronoi boundary if its two adjacent pixels are

colored di�erently. A discrete Voronoi vertex is a

node with three or four incident boundaries. The dis-

crete Voronoi boundaries and vertices form the discrete

Voronoi graph. This graph can be qualitatively di�er-

ent from the actual Voronoi diagram. For example,

the discrete Voronoi graph in Figure 1 has a two-cycle,

which cannot occur in the continuous Voronoi diagram.

From the frame bu�er, we compute the discrete



Voronoi graph by using a continuation method. We

begin by searching the outside edge of the frame bu�er

for a pair of adjacent, di�erent-colored pixels and then

trace out the rest of the component by repeatedly ex-

amining adjacent pixels. Discrete Voronoi vertices are

inserted into the graph as they are covered by the trac-

ing algorithm. The edges of the graph are formed by

boundary chains.

The use of the frame bu�er places some additional

restrictions on the representation of the obstacles.

Large, non-convex obstacles may need to be broken

up into smaller obstacles, so that the Voronoi diagram

reveals pathways needed for planning. However, break-

ing a large obstacle into a great number of small ob-

stacles is to be avoided when possible, as it makes the

Voronoi diagram unnecessarily complex and cluttered,

and increases the risk of resolution error.

As with the distance bu�er, the fact that we can

quickly recompute the frame bu�er allows us to use the

frame bu�er in dynamic scenes. In this case, the update

of the frame bu�er and the associated Voronoi graph

can be computed at interactive rates. This helps to

identify new potential paths in a dynamic environment.

4.3 Utilizing Both Bu�ers

The distance and frame bu�ers can be used together

in a motion planner. Here we describe two techniques

that we have developed and implemented successfully.

The �rst algorithm plans motion along the discrete

Voronoi boundary, computed from the frame bu�er.

Along each arc of the boundary, the distance to the

nearest obstacle is given in the distance bu�er. When

the discrete Voronoi graph is computed, each edge is

stored along with its minimum and maximum clear-

ances. These clearances are used to determine a weight

for each edge. For instance, if each edge is weighted

with the reciprocal of the minimum distance, then a

shortest-path graph algorithm can �nd a maximally-

clear path for the robot.

The second motion planning algorithm we present

is designed for dynamic environments. The distance

bu�er is quite useful in local motion planning through

a dynamic scene, but it needs a sequence of subgoals

or \milestones." We use the discrete Voronoi graph,

obtained from the frame bu�er, to determine the mile-

stones. At each time step, we compute the entire

Voronoi graph, and weight the edges by a combina-

tion of boundary arc length and clearance. An optimal

path is found in this graph from the robot to the goal.

After that, a Voronoi vertex along this path and a little

ahead of robot's current position is chosen as a mile-

stone. A force is applied to the robot that attracts it

toward the milestone. This force is combined with the

other forces on the robot to determine its motion for

that time step.

4.4 Sources of Error

Our techniques derive their e�ciency from a uniform

discretization of space. The discretization implies sev-

eral di�erent kinds of error, which we classify into dis-

tance error and combinatorial error.

Distance error is simply the error in the distance

bu�er. Such error derives primarily from two sources:

meshing error, as from approximating a cone by a fan

of triangles and tessellation error, as from replacing a

curved site by a polygonal approximation. Distance

error is easily bounded, as discussed in Section 3.

Combinatorial error is qualitative rather than quan-

titative. For instance, a discrete Voronoi boundary is

found between two sites that are not Voronoi neighbors,

or two Voronoi vertices are merged into one. A discrete

Voronoi vertex may be arbitrarily far from its corre-

sponding vertex in the continuous domain. Combina-

torial error is usually due to insu�cient spatial spatial

sampling (as determined by display resolution). The

error can be alleviated by local magni�cation.

5 System Implementation and

Performance

To illustrate the application of our techniques, we

have implemented a simple motion planner using

our system for computing generalized Voronoi dia-

grams. We demonstrate its e�ectiveness on a com-

plex environment|the interior of a house|composed

of over 140,000 polygons. Initially we consider a static

environment, but later allow dynamic obstacles. The

robot has three degrees of freedom, x- and y-translation

along the ground and rotation about the z-axis.

The approach we use is similar to the one outlined in

Section 4.3. Each obstacle is assigned a unique iden-

tifying color. For our house example, each piece of

furniture is modeled separately and gets its own color.

Unfortunately, the walls of the house were modeled as

a single object. If all walls are given the same color,

then there will be no Voronoi boundary between oppo-

site walls, so it was necessary to manually divide the

house into several wall sections. Running our Voronoi

algorithm on the 2D projection of these obstacles gen-

erates a color image in the frame bu�er on which we run

our boundary �nding and graph building algorithm, as

described in Section 4.2. Color �gure 1 gives a pic-

ture of the distance bu�er generated, overlaid with the



graph connecting the Voronoi vertices, which were de-

rived from the frame bu�er.

We �nd the nearest node in the Voronoi graph to

the current position as well as the nearest node to the

goal con�guration, and perform a graph search over

the Voronoi graph edges, �nding the path of minimum

weight. The weight is determined for each edge by a

combination of two factors: the arc length (in the L1

\Manhattan" metric) of the Voronoi boundary between

the nodes, and the inverse of the minimum clearance

along that edge. We take the next node in the gener-

ated path to be our next milestone. In general, the path

between each two milestones will be relatively straight

and wide.

Planning the path to the next milestone is accom-

plished using the potential-�eld based approach. The

repulsive force is calculated using the distance values

obtained from the distance bu�er. These forces and the

resulting torques cause the robot to avoid the obstacles

locally, possibly inducing rotation. The automated se-

lection of milestones described earlier prevents most of

the problems associated with local minima.

Color �gures 1 and 2 show two di�erent views of a

sequence of motions that have been generated by our

motion planner. In the sequence, the music stand is the

robot, which is being moved through the house, �lled

with moving furniture. The overhead view uses color

to highlight the current nearest Voronoi node, the goal

Voronoi node, and the next milestone. As the music

stand moves through the house, its path is sometimes

blocked by the furniture, but a path is opened up when

the furniture moves. The 3D view illustrates two cases

where the motion is temporarily blocked until furniture

is moved out of the way.

For the example shown we use 9 sample points on

the music stand. The potential function we use adds

a attractive force (linear in distance) toward the next

milestone to a repulsive force (degree four in the dis-

tance) away from the obstacles. In practice, it is pos-

sible to use many other potential functions.

All computations, including the generation of the

GVD, the building and searching of the graph, and the

planning of the next step in the motion path, occur

interactively (i.e. at more than 30 steps per second).

It is important that the computation be performed at

interactive rates since the motion of the furniture in a

dynamic scene can change the path, both locally and

globally.

6 Summary and Future Work

We have described several techniques to exploit the

fast computation of a generalized Voronoi diagram us-

ing graphics hardware for robot motion planning in

complex static and dynamic environments. We have

also demonstrated some promising preliminary results.

Our current algorithm and implementation is limited

to three-dimensional workspace for rigid robots. We

conjecture that it can be extended to 
exible robots

or articulated robots. There are several interesting re-

search issues that we are planning to investigate next:

� Design better sampling strategies based on

Voronoi boundaries for randomized potential �eld

planning or probabilistic roadmapmethods [KL94,

KSLO96, KLH98].

� Develop smart biasing techniques using weighted

Voronoi diagrams to indicate \preferred" paths

or directions, when planning using generalized

Voronoi diagrams.

� Investigate the use of approximate general-

ized Voronoi diagrams for planning with (non-

holonomic, visibility, etc.) constraints.

� Integrate the resulting motion planning algorithms

with six-degree-of-freedom haptic rendering for

maintainability studies.
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