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• Examples 

• http://www.youtube.com/watch?v=ABJjdpxeMtE&n

oredirect=1 

• http://www.youtube.com/watch?v=tro-fjsBs9g 
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• Navigation in an environment where local navigation 

techniques are insufficient 

• “Local” 

• Walk straight to goal 

• Always turn such that direction is most toward 

goal as possible 

• Local Minima 

• Local techniques can lead to globally 

inefficient choices 
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• Visual representation more detailed than necessary 

• Very common for dynamics simulation 

• Typically true for navigation as well 

• The more complex the representation, the more 

expensive 
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• Full 3D polygonal 

representation 

• Quite expensive 

• Details smaller than  

~0.2 m probably don’t 

matter. 

• Floor plan matters more 

than vertical space 

• (vertical clearance) 
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• 2D footprint 

• Saving an entire dimension 

• How much detail? 

• Coarse bounding volumes 

• Visually clear regions are no longer clear 
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• Keep polygons or rasterize to grid? 

• Grid offers simple “is colliding” query 

• (Compatible with potential field methods) 
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• Solving requires two things 

• Represent the navigable space and its 

relationships 

• Search the navigable space for optimal paths 
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• Various names 

• Guidance field 

• Potential field 
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• Discretization of space 

• Cells don’t have to be uniform or square 

• Rectangle, hex, etc. 

• Cells are either marked as free or occupied 

• Non-boolean values possible 
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NAVIGATION GRID - USAGE 
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• Select a goal point 

• Each cell contains the direction of travel along the 
shortest path from that cell to the goal point 

• Compute: 

• Compute shortest path distance to goal from each 
cell center 

• Solve using front propagation algorithms 
• (e.g. https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp2.html) 

• Compute gradient of the field – gradient is the 
direction of the shortest path 
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• Pros 

• O(1) preferred direction computation 

• (even with bi-linear interpolation of the grid) 

• Cons 

• Expensive creation 

• Pre-computation or created by hand 

• Suffers from discretization errors 

• One field per goal 

• Requires planar topology – can’t walk over and under 
a bridge 
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• A discrete sampling of free space 

• Each sample is guaranteed to be collision free 

• Links between samples is guaranteed to be a 

collision free trajectory 
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• Given start (s) and goal (g) positions 

• Link to roadmap 

• Find path on roadmap 
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• Path 

• P = [p1, p2, p3, …, pn, g] 

• Ordered list of waypoints 

• Preferred direction is direction toward “next” 

waypoint – the target waypoint 

• When do you change which waypoint is the target 

waypoint? 

• What if the target waypoint is lost? 
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ROAD MAP - USE 
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• When do you advance the target waypoint? 

• Simply measure distance (d) – d < D  reached 

• D – threshold 

• Big enough to be robust 

• Small enough that the next waypoint is 
reachable 

• What if the crowd keeps me from reaching the 
waypoint? 

• What if the crowd sweeps me PAST the waypoint 
along my path, but I don’t get close? 
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• When do you advance the target waypoint? 

• Visibility tests 

• Set the target waypoint to be the most 

advanced waypoint that is visible 

• This keeps the waypoint as far in “front” as 

possible 

• Also detects if the agent is pushed from the 

path 
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• What if you lose sight of the target waypoint (pushed 
off the path)? 

• Replan 

• Create a new path 

• Rewind 

• Try testing previous waypoints (or successive) 

• Replan if all else fails 

• Remember 

• Remember where you were when you last 
could see it and work toward that 
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ROAD MAP - ANALYSIS 
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• Paths are dependent on sampling and connectivity 

• Path is only “optimal” w.r.t. the graph – not the 

environment 

• “Smoothing” the path helps 

• Earlier visibility query implicitly smooths the path 

• All but the last visible nodes are culled 
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• That form of smoothness depends on the roadmap 
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• Paths are dependent on sampling and connectivity 

• How close it is to optimal depends on how close 

the roadmap samples come to the optimal path 

• No link  no path 
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• Clearance 

• Roadmaps are computed with one clearance in 

mind 

• What if there are entities of varying size? 

• Big agents will attempt to travel links with 

insufficient clearance on a small-agent map 

• Small agents will skip valid paths when using 

big-agent maps 

• Encode each link with maximum clearance 
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• More choices  more complexity  

• The only way to give agents more paths to reach 

their goal is to increase the complexity of the map 

• Search algorithms are worse than linear in the 

length of the optimal path (length = # of links) 

• Double the # of links, more than double the 

computation time 

• Also increase memory footprint 
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• Pros 

• Easy to create 

• Graph search straight-forward and generally effective 

• Pre-computed 

• Allows for non-planar topologies 

• Cons 

• Hard to create a good roadmap 

• Paths non-optimal and non-smooth 

• Requires acceleration structure and visibility query to 
link to the graph 
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• Discretization of free region into a mesh of convex 

polygons 
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• Discretization of free region into a mesh of convex 

polygons 

• Graph search the mesh for an envelope 

• Compute path in the envelope 
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• Envelope Path 

• Centroid path 

• Edge center path 

• “Optimal” path 

 

NAVIGATION MESH - USE 
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• Funnel algorithm (approximate) 

• How we select the “optimal” path 

 

NAVIGATION MESH - USE 
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• Define an origin: o 

• Define the cone of visibility 

spanning the first portal 

• For each successive portal 

• Contract the funnel 

• If funnel collapses, create a 

waypoint on that portal vertex 

• Reset the origin to that 

waypoint 

 

NAVIGATION MESH - USE 
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• Implicit connectivity 

 

NAVIGATION MESH - ANALYSIS 
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• Clearance for range of sizes 

• In the graph – make edge weight depend on 

clearance 
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• Convexity is good 

• Any two points inside a convex polygon are 

“linkable” 

• Progress easy to track 

• Given target portal, as long as I’m in the 

polygon, I can move to a point on the portal 
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• If the edges are wide enough, is the mesh clear? 

• Not necessarily 

• Further classification needs to be done 

• Clearance can depend on which way one travels 
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• What is the path distance between two polygons for 

graph search? 

• Moving from red to blue 

• Correcting this brings back graph density 
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• Pros 

• Generally more compact than equivalent graphs 

• Envelopes of trajectories encoded 

• Cons 

• VERY difficult to produce 

• Properly handling clearance is tricky 
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• Narrow passages 
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• Wide passages 

 

WAYPORTALS 
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• Wide passages 

 

WAYPORTALS 
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WAYPORTALS 

• Global Planning 

– Understands full domain 

– For agent and goal: 

• Find “optimal” path to goal 

• Only consider static obstacles 

• Nearby agents have similar paths 
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WAYPORTALS 

• Local Planning 

– Limited domain knowledge 

• Waypoint 

– Move towards waypoint 
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WAYPORTALS 

• Local Planning 

– Limited domain knowledge 

• Waypoint 

– Move towards waypoint 

– Avoid collisions 
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WAYPORTALS 

• Local Planning 

– Limited domain knowledge 

• Waypoint 

– Move towards waypoint 

– Avoid collisions 
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WAYPORTALS 

• Local Planning 

– Only knows waypoint 

– Unable to exploit additional 
space 

– Solution: 

– Small change to global 
planner to communicate 
more semantics 

– Extend local planner to use 
new information 
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WAYPORTALS 

• Previous work in Global Planning 

• Roadmaps  
[Latombe, 1991], [LaValle, 2006] 

• Navigation Mesh  
[Hertel and Mehlhorn, 1985], [Tozour, 2003], 
[Mononen, 2009], [Snook, 2000], [Kallmann, 
2010], [Van Toll et al., 2011] 

• Potential field  
[Khatib, 1986] 

• Dynamic adaptation  
[Jaillet and Simeon 2004; Kallman and Mataric 
2004; Ferguson et al. 2006, Zucker et al. 2007], 
[Sud et al. 2007; Yang and Brock 2007], [Kretz et 
al, 2012] 
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• Limited knowledge leads to limited response 

• Promote 1D waypoint to 2D wayportal 

• Preferred velocity becomes an arc of velocities 

 

WAYPORTALS 
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• Using Wayportals 
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• Improved space utilization and flow 
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• Improved space utilization and flow 
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• Improved space utilization and flow 
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• Summary 

• Formulation for improving space utilization and 

flow consistent with human behavior 

• Efficiency: minimal increase 

• 10% more expensive over waypoint for 700 

agents (from 2.0 μs to 2.2 μs per agent) 

• Correctness: space utilization more consistent 

with observed human behavior 
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• Limitations 

• Optimization function is non-convex; 

approximation constrains the full space of 

responses 
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