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LOCAL NAVIGATION

- Dynamic adaptation of global plan to local conditions

* A.K.A. “local collision avoidance” and “pedestrian
models”
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LOCAL NAVIGATION
. Why do it?

* Could we use “global” motion planning techniques?

* |ssues
- Computationally expensive

- Assumes global knowledge of dynamic
environment
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LOCALITY

- Limited knowledge -> local techniques

* It is reasonable to assume agents can have global
knowledge of static environment

« UAVs can have maps
* Robots can know the building they operate In
« Access to google maps, etc.
- But can they know what is happening out of sight?

« People often drive into traffic jams because
they didn’t know it was there (until too late)
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LOCALITY

* What is local?
- What information matters most?
* Imminent interaction
* What information can you know?
 Line-of-sight visibility

- Aural perception (less precise, but goes
around corners)

« Explicit communication (information passing)
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LOCALITY

 Imminent interaction
* Define temporally (ideal)

« What can | possibly interact/collide with in the
next t seconds?

« Anything beyond t is unimportant and may
lead to invalid predictions
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LOCALITY

« Assume approximately uniform speeds

Temporal locality - spatial locality

Distance simply time * speed
PROS
- Seems plausible

- Computationally efficient spatial queries
CONS
« Poor for scenarios with widely varying speeds

 Pedestrians vs. cars

This Is the common practice
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LOCALITY

« Computational constraints
- Assumption: spatial local neighborhood: r=5m

* Roughly 3.75 seconds at average walking
Speed.

Average area of person: A=0.113 m?

Maximum number of neighbors: ~700
Too many N

Pick the k-nearest @ i
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LOCAL COLLISION AVOIDANCE

* Given
* Preferred velocity
» Local state

« Compute

« Collision-free (feasible) velocity
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LOCAL COLLISION AVOIDANCE

* Models define a mechanism for balancing the two
factors

* Represent the effect of preferred velocity
* Represent the effect of dynamic obstacles

 Model the interactions of the two
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LOCAL COLLISION AVOIDANCE

* Four classes of models
« Cellular Automata (Today)
« Social Forces (Today)
« Geometric (Next week)

* Miscellaneous (Next week)
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CELLULAR AUTOMATA

« Game of Life

« Applications in biology and chemistry
- Used in vehicular traffic simulation
* (Cremer and Ludwig,1986)

* Borrowed into pedestrian simulation
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http://www.bitstorm.org/gameoflife/

CELLULAR AUTOMATA

« Decomposition of domain into
a grid of cells

« Agents in a single cell
« Cell holds one agent

« Simple rules for moving agents
toward goal

University of North Carolina at Chapel Hill

W)

13




CELLULAR AUTOMATA
- Blue & Adler, (1998, 1999)

« Simple uni- and bi-directional flow

* Heavily rule-based

* Rules for determining lane changes
* Rules for "advancing”

* Rules are all heuristic and carefully tuned to an
abstract, artificial scenario

« “lane” changes

* Multiple-cell movements
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CELLULAR AUTOMATA

« Statistical CA - Burstedde et al., 2001

« Accounting for pref. vel

* Pref. vel 2 matrix of

probabilities

* Direction of travel selected

probabilistically (target cell)

-
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CELLULAR AUTOMATA

« Statistical CA - Burstedde et al., 2001

« Accounting for neighbors

Rules

 Iftarget cell is already
occupied, don’t move

 If two agents have the
same target, winner based
on relative probabilities
(loser stays still)
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CELLULAR AUTOMATA
« Statistical CA - Burstedde et al., 2001

« Complex behaviors from “floor fields”
« Mechanism for “long-range” interaction
« Contributes to probability matrix

- Leads to aggregate behaviors

 Lane formation, etc.
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CELLULAR AUTOMATA

* Implications
 Homogeneous pedestrians
- “Same” speed, same abilities, same floor fields
« Horizontal/vertical vs. diagonal
« Large timestep

* Cell size ~0.4 m - 0.4m/time step = 1.34 m/s
In ~3 time steps - timestep = 0.3 s

- Highly discretized paths (zig zags)
« Density limits due to simple collision handling
- Can’t move into currently occupied cells
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CELLULAR AUTOMATA

- Extensions

« Hexagonal floor fields [Maniccam, 2003]
* Replace quads with hexagons
« Six directions with uniform speeds

« Multi-cell agents [Kirchner et al., 2004]
- Smaller cells
« Agents occupy multiple cells
- Agents move multiple cells

 Deemed too expensive to be worth it
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CELLULAR AUTOMATA

- Extensions
* Real-coded CA [Yamamoto et al., 2007]
« Support heterogeneous speeds
* Improve trajectories

* (Handling collisions unclear in the paper)
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CELLULAR AUTOMATA

- Still alive and well
- Tawaf [ Sarmady et al., 2010]
* High-level behaviors [Bandini et al., 2007]
- Update algorithm analysis [Bandini et al., 2013]
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SOCIAL FORCES

« Agent with preferred and actual
velocities.

«  “Driving” force pushes current
velocity towards preferred velocity.

* Neighboring agents apply repulsive
force.

« Forces are linearly combined and
transformed into acceleration.

* Velocity changes by the
acceleration.
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SOCIAL FORCE
* Arose In the 70s [Hiral & Tarui, 1975]

- Partially inspired by sociologists attraction to field
theory

* Resurgence in the 90s [Helbing and Molnar, 1995]

- Defined many of the traits that are seen in many
of the current models

« These are not potential field methods, per se

* They planning doesn’t follow the gradient of the
field

* The field implies an acceleration
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SOCIAL FORCE — [HELBING & MOLNAR, 1995]

* Driving force
* Fy=m\—-v)/t
- Exponential repulsive forces
« F, =AeldR)
« A Gaussian function where o = R/sqrt(2)
* Infinite support (theoretically)
- Compact support practically: 6o

- Exponential evaluated at 3o = 0.011
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SOCIAL FORCE — [HELBING & MOLNAR, 1995]

- Elliptical contours of repulsion field

* Models personal space — in front is more
Important than to the side

- Treats backwards more important than side

* Implies orientation (defined as the direction of
motion)

« Undefined for stationary agents

University of North Carolina at Chapel Hill 25



SOCIAL FORCE — [HELBING & MOLNAR, 1995]

- Weighted directions
« Relative to direction of preferred velocity

* Discontinuous: 1 or ¢, based on direction

1 |

c |

-t -0 0 §) s
- Attractive forces

« Random fluctuations

* This is not what you have in Menge
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SOCIAL FORCE — [HELBING & MOLNAR, 1995]

* Implications

* Full response is linear combination of individual
responses

- 2"d-grder equation
- The velocity you pick depends on the time step
« Dense populations = stiff systems

« Smooth compact support - high derivative at
small distances

- Parameter tuning
« Force magnitudes depend on circumstances
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SOCIAL FORCE — [HELBING & FARKAS, 2000]

« Social force simulation of escape panic

 Removed:

 Direction weighting

 Elliptical force fields

 Random perturbations

- Attractive forces
- Added compression and friction forces
» This is what you have in Menge

« Considered (by me) to be the simplest social
force model
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SOCIAL FORCE

- Johansson et al., 2007
* Restores elements from the 1995 paper
* Directional weight (varies smoothly)
- Elliptical equipotential lines
 Introduces relative velocity term
* Relative velocity term

* (This is an option for the next HW)
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SOCIAL FORCE
 Chralbi et al., 2010

Generalized Centrifugal Force (GCF)
Includes a relative velocity term

Directional weight

Repulsive force based on inverse distance
Changes representation of agents to elliptical
« Shape of ellipse changes w.r.t. speed

- Faster - longer, narrower ellipse

« Shorter = narrow, wider ellipse
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SOCIAL FORCE

* Predictive

- Karamouzas, et al. 2009 and Zanlungo, et al.,
2010

- Compute force based on predicted interactions
« Computation of individual forces is similar

- Karamouzas adds new method for combining
forces

* |terative calculation and combination

* Does not guarantee that they won’t cancel
each other out

* (Zanlungo is also an option for the next HW)
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SOCIAL FORCE

* Force-based approaches
» Other models which use forces
* Forces are derived from ad hoc rules
 HIDAC
* OpenSteer

 Autonomous Pedestrians
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