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• Nodes are in one of three states 

• Visited 

• Popped from the queue 

• Queued 

• Placed in the queue because a neighbor was 

visited 

• Unexplored 

• Hasn’t been considered in any way 
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A* ALGORITHM - REVISITED 
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• Queued 

• They are placed in the queue with a value for f 

• NODES in the queue can have their f-value 

change 

• Changed f-value  changed path 
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A* ALGORITHM - REVISITED 

4 

minDistance( start, end, nodes ) 

closed = {} 

open = {start} 

g[ start ] = 0 

f[ start ] = g[ start ] + h( start, end ) 

while ( ! open.isEmpty() ) 

c = minF( open ) 

if ( c == end ) return g[ c ] 

open = open \ {c}; closed = closed U {c} 

for each neighbor, n, of c 

if ( n in closed ) continue 

gTest = g[ c ] + E( n, c ) 

if ( gTest < g[ n ] ) 

g[ n ] = gTest; f[ n ] = gTest + h(n, end) 

open = open U {n} 
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• Find the path from S  G 
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S A 

B 

G 

C 

A*( S, G ) 

Q = {S} // f(S)=||G-S||, prev(S)=NULL 

curr = S // Q = {} 

Q = {A} // f(A) = x, prev(A)=S 

Q = {A,B} // f(B) < f(A), prev(B)=S 

curr = B   // f(B) < f(A), Q = {A} 

Q = {A,C} // f(C) > f(B) > f(A) 

          // prev(C) = B 

curr = A   // f(B) < f(C), Q={C} 

// C is already queued – don’t change  

//   its value 

curr = C   // Q={} 

Q = {G} // prev(G) = C 

curr = G 

DONE! 

 

Build Path 

G 

prev(G) = C 

prev(C) = B 

prev(B) = S 

PATH: S  B  C  G 
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• Find the path from S  G 
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S A 

B 

G 

C 

A*( S, G ) 

Q = {S} // f(S)=||G-S||, prev(S)=NULL 

curr = S // Q = {} 

Q = {A} // f(A) = x, prev(A)=S 

Q = {A,B} // f(B) < f(A), prev(B)=S 

curr = B   // f(B) < f(A), Q = {A} 

Q = {A,C} // f(C) > f(B) > f(A) 

          // prev(C) = B 

curr = A   // f(B) < f(C), Q={C} 

// C is already queued 

//   test if this is cheaper 

fA(C) < fB(C)  f(C) = fA(C) and  prev(C) = A 

curr = C   // Q={} 

Q = {G} // prev(G) = C 

curr = G 

DONE! 

 

Build Path 

G 

prev(G) = C 

prev(C) = A 

prev(B) = S 

PATH: S  A  C  G 
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• How do you find the minimum value? 

• Do you account for changing values? 

• Typical min-heap implementations don’t allow this 

• (STL certainly doesn’t) 

• I’ll send out a scenario in which this matters 
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NEXT HOMEWORK 
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• Implement pedestrian model 

• Force-based 

• Zanlungo 2011 

• Johansson 2007 

• Much simpler than the roadmap planner 

• Algorithmically simpler 

• Simpler engineering as well 

• Write-up will go out later this week 
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AGENT AI 
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• Temporally-dependent agent goals 

• How do you model an agent’s changing goals? 

• Menge uses an FSM 

• Why use an FSM? 
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AGENT AI - FSM 
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• States can encode: 

• Goal 

• Strategy technique 

• Unique agent state 

• States can change w.r.t. time 

• Explicitly based on elapsed time 

• Implicitly based on achieved goals or change of 

simulation state 

• What else is there? 
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AGENT AI – BEHAVIOR TREE 
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• Currently en vogue in game AI 

• http://www.altdevblogaday.com/2011/02/24/introducti

on-to-behavior-trees/ 

• Misnomer – they are not trees 

• They are directed, acyclic graphs (DAGs) 

• One node can have multiple parents 

• i.e. there are multiple ways to a particular 

behavior 
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AGENT AI – BEHAVIOR TREE 
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• Evaluating a BT 

• Start at the root and traverse the “whole” tree from the 
root at each time step 

• Evaluation of individual nodes affect traversal 

• Node evaluation produces signals 

• Ready – ready to evaluate 

• Success – evaluated and it worked 

• Running – Not finished, run again next time 

• Failed – failed, but unimportant 

• Error – failed, but important 

 

University of North Carolina at Chapel Hill 



AGENT AI – BEHAVIOR TREE 
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• Inner nodes dictate traversal 

• Priority nodes  

• evaluate in priority order, stop on success 

• Sequence nodes 

• Run children in sequence 

• Loop nodes 

• Run children in continuous sequence 

• Random 

• Select child 

• Concurrent 

• Run all children (success dependent on child success rate) 

• Decorator 

• Apply evaluation constraints on children (temporal, pauses, etc.) 

 

University of North Carolina at Chapel Hill 



AGENT AI – BEHAVIOR TREE 
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• Leaf nodes 

• Actions 

• Agent behavior 

• Game state changes 

• Conditions 

• Typically siblings of actions 

• Used in sequence and concurrent nodes to 

enforce invariants 
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AGENT AI – BEHAVIOR TREE 
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• Dragon behavior 

• Priority selector 

• Concurrent - Guard 

treasure 

• Condition – is 

thief near? 

• Sub-tree - Chase 

thief 
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AGENT AI – BEHAVIOR TREE 
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• Dragon behavior 

• Sequence – get more 
treasure 

• Action – choose 
castle 

• Action – fly to castle 

• Sub-tree – fight 
guards 

• Condition – Can 
carry gold? 

• Action – take gold 

• Action – Fly home 

• Action – store gold 
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AGENT AI – BEHAVIOR TREE 
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• Dragon behavior 

• Sub-tree – post 

pictures on facebook 
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AGENT AI 
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• What is the difference between FSM and BT? 

• What can you do with one that you can’t do with 

the other? 

• What can you do easily with one that you can’t do 

easily with the other? 
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MOTION PLANNING 
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• Return to classic motion planning 
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COUPLED PLANNING 
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• Crowd simulation 

• Decoupled/decentralized/distributed planning 

• Limited coordination 

• In principle, no coordination 

• However, coordination can be added 

• No guarantees on convergence 

• If there is a solution, can you promise you’ll get 

it? 
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MULTI-ROBOT MOTION PLANNING 

Jur van den Berg 



OUTLINE 

• Recap: Configuration Space for Single Robot 

• Multiple Robots: Problem Definition 

• Multiple Robots: Composite Configuration Space 

• Centralized Planning 

• Decoupled Planning 

• Optimization Criteria 



CONFIGURATION SPACE 

• Single Robot 

• Dimension = #DOF 

Workspace Configuration Space 

• Translating in 2D 

• Minkowski Sums 



CONFIGURATION SPACE 

• A Single Articulated Robot (2 Rotating DOF) 

• Hard to compute explicitly 

Workspace Configuration Space 



MULTIPLE ROBOTS: PROBLEM DEFINITION 

• N robots R1, R2, …, RN in same 

workspace 

• Start configurations (s1, s2, …, sN) 

• Goal configurations (g1, g2, …, gN) 

• Find trajectory for all  

robots without collisions  

with obstacles and  

mutual collisions 

• Robots may be of  

different type 



PROBLEM CHARACTERIZATION 

• Each of N robots has its own configuration space: (C1, 

C2, …, CN) 

• Example with two robots: one translating robot in 3D, 

and one articulated robot with two joints: 

• C1 = R3 

• C2 = [0, 2π)2 



COMPOSITE CONFIGURATION SPACE 

• Treat multiple robots as one robot 

• Composite Configuration Space C 

• C = C1 × C2 × … × CN 

• Example: C = R3 × [0, 2π)2 

• Configuration c  C: c = (x, y, z, α, β) 

• Dimension of Composite Configuration Space 

• Sum of dimensions of individual configuration 

spaces (number of degrees of freedom) 



OBSTACLES IN COMPOSITE C-SPACE 

• Composite configurations are in forbidden region when: 

• One of the robots collides with an obstacle 

• A pair of robots collide with each other 

• CO = {c1 × c2 × … × cN  C | i  1…N :: ci  COi  i, j 

 1…N :: Ri(ci)  Rj(cj)  } 

• Planning in Composite C-Space? 



PLANNING FOR MULTIPLE ROBOTS 

• Any single robot planning algorithm can be used in the 

Composite configuration space. 

• Grid 

• Cell Decomposition 

• Probabilistic Roadmap Planner 

 



PROBLEM 

• The running time of Motion Planning Algorithms is 

exponential in the dimension of the configuration space 

• Thus, the running time is exponential in the number of 

robots 

• Algorithms not practical for 4 or more robots 

• Solution? 



DECOUPLED PLANNING 

• First, plan a path for each 

robot in its own 

configuration space 

• Then, tune velocities of 

robots along their path so 

that they avoid each other 

• Advantages? 

• Disadvantages? 



ADVANTAGES 

• You don’t  have to deal with 

collisions with obstacles 

anymore 

• The number of degrees of 

freedom for each robot has 

been reduced to one 



DISADVANTAGES 

• The running time is still 

exponential in the number of 

robots 

• A solution may no longer be 

found, even when one exists 

(incompleteness) 

• Solution? 



POSSIBLE SOLUTION 

• Only plan paths that avoid 

the other robots at start and 

final position 

• Why is that a solution? 

• However, such paths may 

not exist, even if there is a 

solution 



COORDINATION SPACE 

• Each axis corresponds to a robot 

 

 

 

 

 

 

 

• How is the coordination-space obstacle computed? 



CYLINDRICAL OBSTACLES 

• Obstacles are cylindrical 

(also in Composite C-

Space) 

• Example: 3D-Coordination 

Space 

• Why? 

• How can this be 

exploited? 



OPTIMIZATION CRITERIA 

• There are (in most cases) multiple solutions to multi-

robot planning problems. 

• Each solution has an arrival time Ti for each of the 

robots: (T1, T2, …, TN)  

• Select the “best” solution. 

• What is best? 



COST FUNCTION 

• cost = maxi (Ti) 

• cost = i (Ti) 

• Minimize cost 



PARETO-OPTIMALITY 

• Other approach: pareto-optimal solutions 

• A solution (T1, …, TN) is better than (T’1, …, T’N) if  

(i  1…N :: Ti < T’i)  (j  1…N :: Tj  T’j) 

• A solution is pareto- 

optimal if there does  

not exist a better solution 

• Multiple solutions can be  

pareto-optimal 

• Which ones? How many? 



CHALLENGE / OPEN PROBLEM 

• Distribute computation 

• Composite Configuration 

Space in worst case 

• But not always necessary 

• Complete planner 

• Any ideas? 
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QUESTIONS? 

42 
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