
MULTI-AGENT NAVIGATION
BACK TO THE BEGINNING

A* ALGORITHM - REVISITED

2

• Nodes are in one of three states

• Visited

• Popped from the queue

• Queued

• Placed in the queue because a neighbor was

visited

• Unexplored

• Hasn’t been considered in any way

University of North Carolina at Chapel Hill

A* ALGORITHM - REVISITED

3

• Queued

• They are placed in the queue with a value for f

• NODES in the queue can have their f-value

change

• Changed f-value  changed path

University of North Carolina at Chapel Hill

A* ALGORITHM - REVISITED

4

minDistance(start, end, nodes)

closed = {}

open = {start}

g[start] = 0

f[start] = g[start] + h(start, end)

while (! open.isEmpty())

c = minF(open)

if (c == end) return g[c]

open = open \ {c}; closed = closed U {c}

for each neighbor, n, of c

if (n in closed) continue

gTest = g[c] + E(n, c)

if (gTest < g[n])

g[n] = gTest; f[n] = gTest + h(n, end)

open = open U {n}

University of North Carolina at Chapel Hill

Sean’s A*

A* ALGORITHM - REVISITED

5

• Find the path from S  G

University of North Carolina at Chapel Hill

S A

B

G

C

A*(S, G)

Q = {S} // f(S)=||G-S||, prev(S)=NULL

curr = S // Q = {}

Q = {A} // f(A) = x, prev(A)=S

Q = {A,B} // f(B) < f(A), prev(B)=S

curr = B // f(B) < f(A), Q = {A}

Q = {A,C} // f(C) > f(B) > f(A)

 // prev(C) = B

curr = A // f(B) < f(C), Q={C}

// C is already queued – don’t change

// its value

curr = C // Q={}

Q = {G} // prev(G) = C

curr = G

DONE!

Build Path

G

prev(G) = C

prev(C) = B

prev(B) = S

PATH: S  B  C  G

A* ALGORITHM - REVISITED

6

• Find the path from S  G

University of North Carolina at Chapel Hill

S A

B

G

C

A*(S, G)

Q = {S} // f(S)=||G-S||, prev(S)=NULL

curr = S // Q = {}

Q = {A} // f(A) = x, prev(A)=S

Q = {A,B} // f(B) < f(A), prev(B)=S

curr = B // f(B) < f(A), Q = {A}

Q = {A,C} // f(C) > f(B) > f(A)

 // prev(C) = B

curr = A // f(B) < f(C), Q={C}

// C is already queued

// test if this is cheaper

fA(C) < fB(C)  f(C) = fA(C) and prev(C) = A

curr = C // Q={}

Q = {G} // prev(G) = C

curr = G

DONE!

Build Path

G

prev(G) = C

prev(C) = A

prev(B) = S

PATH: S  A  C  G

A* ALGORITHM - REVISITED

7

• How do you find the minimum value?

• Do you account for changing values?

• Typical min-heap implementations don’t allow this

• (STL certainly doesn’t)

• I’ll send out a scenario in which this matters

University of North Carolina at Chapel Hill

NEXT HOMEWORK

8

• Implement pedestrian model

• Force-based

• Zanlungo 2011

• Johansson 2007

• Much simpler than the roadmap planner

• Algorithmically simpler

• Simpler engineering as well

• Write-up will go out later this week

University of North Carolina at Chapel Hill

AGENT AI

9

• Temporally-dependent agent goals

• How do you model an agent’s changing goals?

• Menge uses an FSM

• Why use an FSM?

University of North Carolina at Chapel Hill

AGENT AI - FSM

10

• States can encode:

• Goal

• Strategy technique

• Unique agent state

• States can change w.r.t. time

• Explicitly based on elapsed time

• Implicitly based on achieved goals or change of

simulation state

• What else is there?

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

11

• Currently en vogue in game AI

• http://www.altdevblogaday.com/2011/02/24/introducti

on-to-behavior-trees/

• Misnomer – they are not trees

• They are directed, acyclic graphs (DAGs)

• One node can have multiple parents

• i.e. there are multiple ways to a particular

behavior

University of North Carolina at Chapel Hill

http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/

AGENT AI – BEHAVIOR TREE

12

• Evaluating a BT

• Start at the root and traverse the “whole” tree from the
root at each time step

• Evaluation of individual nodes affect traversal

• Node evaluation produces signals

• Ready – ready to evaluate

• Success – evaluated and it worked

• Running – Not finished, run again next time

• Failed – failed, but unimportant

• Error – failed, but important

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

13

• Inner nodes dictate traversal

• Priority nodes

• evaluate in priority order, stop on success

• Sequence nodes

• Run children in sequence

• Loop nodes

• Run children in continuous sequence

• Random

• Select child

• Concurrent

• Run all children (success dependent on child success rate)

• Decorator

• Apply evaluation constraints on children (temporal, pauses, etc.)

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

14

• Leaf nodes

• Actions

• Agent behavior

• Game state changes

• Conditions

• Typically siblings of actions

• Used in sequence and concurrent nodes to

enforce invariants

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

15

• Dragon behavior

• Priority selector

• Concurrent - Guard

treasure

• Condition – is

thief near?

• Sub-tree - Chase

thief

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

16

• Dragon behavior

• Sequence – get more
treasure

• Action – choose
castle

• Action – fly to castle

• Sub-tree – fight
guards

• Condition – Can
carry gold?

• Action – take gold

• Action – Fly home

• Action – store gold

University of North Carolina at Chapel Hill

AGENT AI – BEHAVIOR TREE

17

• Dragon behavior

• Sub-tree – post

pictures on facebook

University of North Carolina at Chapel Hill

AGENT AI

18

• What is the difference between FSM and BT?

• What can you do with one that you can’t do with

the other?

• What can you do easily with one that you can’t do

easily with the other?

University of North Carolina at Chapel Hill

MOTION PLANNING

19

• Return to classic motion planning

University of North Carolina at Chapel Hill

COUPLED PLANNING

20

• Crowd simulation

• Decoupled/decentralized/distributed planning

• Limited coordination

• In principle, no coordination

• However, coordination can be added

• No guarantees on convergence

• If there is a solution, can you promise you’ll get

it?

University of North Carolina at Chapel Hill

MULTI-ROBOT MOTION PLANNING

Jur van den Berg

OUTLINE

• Recap: Configuration Space for Single Robot

• Multiple Robots: Problem Definition

• Multiple Robots: Composite Configuration Space

• Centralized Planning

• Decoupled Planning

• Optimization Criteria

CONFIGURATION SPACE

• Single Robot

• Dimension = #DOF

Workspace Configuration Space

• Translating in 2D

• Minkowski Sums

CONFIGURATION SPACE

• A Single Articulated Robot (2 Rotating DOF)

• Hard to compute explicitly

Workspace Configuration Space

MULTIPLE ROBOTS: PROBLEM DEFINITION

• N robots R1, R2, …, RN in same

workspace

• Start configurations (s1, s2, …, sN)

• Goal configurations (g1, g2, …, gN)

• Find trajectory for all

robots without collisions

with obstacles and

mutual collisions

• Robots may be of

different type

PROBLEM CHARACTERIZATION

• Each of N robots has its own configuration space: (C1,

C2, …, CN)

• Example with two robots: one translating robot in 3D,

and one articulated robot with two joints:

• C1 = R3

• C2 = [0, 2π)2

COMPOSITE CONFIGURATION SPACE

• Treat multiple robots as one robot

• Composite Configuration Space C

• C = C1 × C2 × … × CN

• Example: C = R3 × [0, 2π)2

• Configuration c  C: c = (x, y, z, α, β)

• Dimension of Composite Configuration Space

• Sum of dimensions of individual configuration

spaces (number of degrees of freedom)

OBSTACLES IN COMPOSITE C-SPACE

• Composite configurations are in forbidden region when:

• One of the robots collides with an obstacle

• A pair of robots collide with each other

• CO = {c1 × c2 × … × cN  C | i  1…N :: ci  COi  i, j

 1…N :: Ri(ci)  Rj(cj)  }

• Planning in Composite C-Space?

PLANNING FOR MULTIPLE ROBOTS

• Any single robot planning algorithm can be used in the

Composite configuration space.

• Grid

• Cell Decomposition

• Probabilistic Roadmap Planner

PROBLEM

• The running time of Motion Planning Algorithms is

exponential in the dimension of the configuration space

• Thus, the running time is exponential in the number of

robots

• Algorithms not practical for 4 or more robots

• Solution?

DECOUPLED PLANNING

• First, plan a path for each

robot in its own

configuration space

• Then, tune velocities of

robots along their path so

that they avoid each other

• Advantages?

• Disadvantages?

ADVANTAGES

• You don’t have to deal with

collisions with obstacles

anymore

• The number of degrees of

freedom for each robot has

been reduced to one

DISADVANTAGES

• The running time is still

exponential in the number of

robots

• A solution may no longer be

found, even when one exists

(incompleteness)

• Solution?

POSSIBLE SOLUTION

• Only plan paths that avoid

the other robots at start and

final position

• Why is that a solution?

• However, such paths may

not exist, even if there is a

solution

COORDINATION SPACE

• Each axis corresponds to a robot

• How is the coordination-space obstacle computed?

CYLINDRICAL OBSTACLES

• Obstacles are cylindrical

(also in Composite C-

Space)

• Example: 3D-Coordination

Space

• Why?

• How can this be

exploited?

OPTIMIZATION CRITERIA

• There are (in most cases) multiple solutions to multi-

robot planning problems.

• Each solution has an arrival time Ti for each of the

robots: (T1, T2, …, TN)

• Select the “best” solution.

• What is best?

COST FUNCTION

• cost = maxi (Ti)

• cost = i (Ti)

• Minimize cost

PARETO-OPTIMALITY

• Other approach: pareto-optimal solutions

• A solution (T1, …, TN) is better than (T’1, …, T’N) if

(i  1…N :: Ti < T’i)  (j  1…N :: Tj  T’j)

• A solution is pareto-

optimal if there does

not exist a better solution

• Multiple solutions can be

pareto-optimal

• Which ones? How many?

CHALLENGE / OPEN PROBLEM

• Distribute computation

• Composite Configuration

Space in worst case

• But not always necessary

• Complete planner

• Any ideas?

REFERENCES

• Latombe. Robot Motion Planning. (book)

• Kant, Zucker. Toward Efficient Trajectory Planning: The
Path-Velocity Decomposition

• Leroy, Laumond, Simeon. Multiple Path Coordination for
Mobile Robots: a Geometric Approach

• Svestka, Overmars. Coordinated Path Planning for Multiple
Robots.

• Lavalle, Hutchinson. Optimal Motion Planning for Multiple
Robots Having Independent Goals

• Sanchez, Latombe. Using a PRM Planner to Compare
Centralized and Decoupled Planning for Multi-Robot
Systems

• Ghrist, O’Kane, Lavalle. Computing Pareto Optimal
Coordinations on Roadmaps

QUESTIONS?

42

University of North Carolina at Chapel Hill

