MULTI-AGENT NAVIGATION

BACK TO THE BEGINNING

A* ALGORITHM - REVISITED

* Nodes are in one of three states
 Visited
* Popped from the queue
* Queued

* Placed in the queue because a neighbor was
visited

* Unexplored

 Hasn't been considered in any way

University of North Carolina at Chapel Hill

A* ALGORITHM - REVISITED

* Queued
- They are placed in the queue with a value for f

« NODES in the queue can have their f-value
change

- Changed f-value - changed path

University of North Carolina at Chapel Hill

A* ALGORITHM - REVISITED

minDistance (start, end, nodes)
closed = {}

open = {start}
gl start] = 0
f[start] = g[start] + h(start, end
while (! open.isEmpty ())
c = minF (open)
if (¢ == end) return g[c]

open = open \ {c}; closed = closed U {c}

for each neighbor, n, of c
if ((n in closed) continue
gTest = g[¢] + E(n, c)
if (gTest < g[n])

gl n] = gTest; f[n] = gTest + hi(n,

open = open U {n}

Sean’s A*
University of North Carolina at Chapel Hill

A* ALGORITHM - REVISITED

* Find the path from S 2 G

University of North Carolina at Chapel Hill

A*(

S, G)

Q = (S} // £(S)=]

curr = S // Q = {}
Q = {a} // £(An) =
Q = {A,B} // f(B)

curr = B // £(B) < (A), Q = {A}
Q = {A,C} // £(C) > £(B) > f£(An)
// prev (C) B

curr = A // £(B) < £(C), Q={C}

// C is already queued - don’t change
// its value

curr = C // Q={}

Q = {G} // prev(G) = C

curr = G

DONE !

Build Path

G

prev(G) = C

prev(C) = B

prev(B) = S

PATH: S 2 B 2> C 2 G

A* ALGORITHM - REVISITED

* Find the path from S 2 G

University of North Carolina at Chapel Hill

A*(

S, G)
Q = {S} // £(S)=]11G-S||, prev(S)=NULL
curr = S // Q = {}
QO = {A} // £(A) = x, prev(A)=S
Q = {A,B} // £(B) < £(A), prev(B)=S
curr = B // £(B) < £(A), QO = {A}
Q = {A,C}y // £(C) > £(B) > f£(A)
// prev(C) = B
curr = A // £(B) < £(C), Q0={C}

// C is already queued
// test if this is cheaper

fA(C) < fB(C) = f(C) = fA(C) and prev (C)
curr = C /] Q={}

Q = {G} // prev(G) = C

curr = G

DONE !

Build Path

G

prev(G) = C

prev(C) = A

prev(B) = S

PATH: S 2 A 2> C 2 G

A* ALGORITHM - REVISITED

* How do you find the minimum value?
* Do you account for changing values?

« Typical min-heap implementations don’t allow this

* (STL certainly doesn't)

* |'ll send out a scenario in which this matters

University of North Carolina at Chapel Hill

NEXT HOMEWORK

* Implement pedestrian model
* Force-based
- Zanlungo 2011
» Johansson 2007
* Much simpler than the roadmap planner
 Algorithmically simpler
- Simpler engineering as well

« Write-up will go out later this week

University of North Carolina at Chapel Hill

AGENT Al

« Temporally-dependent agent goals

- How do you model an agent’s changing goals?
 Menge uses an FSM

 Why use an FSM?

University of North Carolina at Chapel Hill

AGENT Al - FSM

- States can encode:
- Goal
- Strategy technique
« Unique agent state
- States can change w.r.t. time
« Explicitly based on elapsed time

 Implicitly based on achieved goals or change of
simulation state

« What else is there?

University of North Carolina at Chapel Hill

10

AGENT Al - BEHAVIOR TREE

« Currently en vogue in game Al

* Misnomer — they are not trees
* They are directed, acyclic graphs (DAGS)
* One node can have multiple parents

* |.e. there are multiple ways to a particular
behavior

University of North Carolina at Chapel Hill

11

http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/
http://www.altdevblogaday.com/2011/02/24/introduction-to-behavior-trees/

AGENT Al - BEHAVIOR TREE

- Evaluating a BT

« Start at the root and traverse the “whole” tree from the
root at each time step

- Evaluation of individual nodes affect traversal
* Node evaluation produces signals
* Ready - ready to evaluate

Success — evaluated and it worked

Running — Not finished, run again next time

Failed — failed, but unimportant

Error — failed, but important

University of North Carolina at Chapel Hill 12

AGENT Al - BEHAVIOR TREE

* Inner nodes dictate traversal
* Priority nodes
» evaluate in priority order, stop on success

Sequence nodes
* Run children in sequence
* Loop nodes
* Run children in continuous sequence
« Random
« Select child
« Concurrent
* Run all children (success dependent on child success rate)
* Decorator
* Apply evaluation constraints on children (temporal, pauses, etc.)

University of North Carolina at Chapel Hill

13

AGENT Al - BEHAVIOR TREE

- Leaf nodes
 Actions
* Agent behavior
- Game state changes
- Conditions
 Typically siblings of actions

« Used in sequence and concurrent nodes to
enforce invariants

University of North Carolina at Chapel Hill

14

AGENT Al - BEHAVIOR TREE

* Dragon behavior

University of North Carolina at Chapel Hill 15

AGENT Al - BEHAVIOR TREE

- Dragon behavior

[J
1.1 ' 1.2 sub-
cond? .\ behavicr /

University of North Carolina at Chapel Hill 16

AGENT Al - BEHAVIOR TREE

* Dragon behavior

* Sub-tree — post
pictures on facebook

o

< 1. concurrent selector

1.2 sub-
behavior

L t 3. sub-behavior
T o - . = -

University of North Carolina at Chapel Hill 17

AGENT Al

« What is the difference between FSM and BT?

* What can you do with one that you can’t do with
the other?

* What can you do easily with one that you can’t do
easily with the other?

University of North Carolina at Chapel Hill

18

MOTION PLANNING

* Return to classic motion planning

University of North Carolina at Chapel Hill

19

COUPLED PLANNING

« Crowd simulation
« Decoupled/decentralized/distributed planning
* Limited coordination
* In principle, no coordination
- However, coordination can be added
- NoO guarantees on convergence

 If there is a solution, can you promise you'll get
it?

University of North Carolina at Chapel Hill 20

MULTI-ROBOT MOTION PLANNING

Jur van den Berg

OUTLINE

Recap: Configuration Space for Single Robot
Multiple Robots: Problem Definition

Multiple Robots: Composite Configuration Space
Centralized Planning

Decoupled Planning

Optimization Criteria

CONFIGURATION SPACE

» Single Robot » Translating in 2D
- Dimension = #DOF e Minkowski Sums

‘l
\ A

Workspace Configuration Space

CONFIGURATION SPACE
* A Single Articulated Robot (2 Rotating DOF)

- Hard to compute explicitly

Workspace Configuration Space

MULTIPLE ROBOTS: PROBLEM DEFINITION

N robots R, R,, ..., Ry In same
workspace

- Start configurations (S4, S,, ..., Sy)

- Goal configurations (g4, 95, ..., g)

* Find trajectory for all
robots without collisions
with obstacles and
mutual collisions

* Robots may be of
different type

PROBLEM CHARACTERIZATION

- Each of N robots has its own configuration space: (C,,
C,, ..., Cy)

- Example with two robots: one translating robot in 3D,
and one articulated robot with two joints:

. C,=R3
« C, =[0, 21)?

COMPOSITE CONFIGURATION SPACE

« Treat multiple robots as one robot
- Composite Configuration Space C
c C=C xC,x...%xCy
« Example: C = R3x [0, 21T)?
- Configurationc € C:.c=(x,V, z, a, B)
- Dimension of Composite Configuration Space

« Sum of dimensions of individual configuration
spaces (number of degrees of freedom)

OBSTACLES IN COMPOSITE C-SPACE

« Composite configurations are in forbidden region when:
* One of the robots collides with an obstacle
A pair of robots collide with each other

- CO={cyxc,x...xcyeC|del..N:ceCOVvi,j
e 1...N I Ri(c;) N Ri(c)) = D}

* Planning in Composite C-Space?

PLANNING FOR MULTIPLE ROBOTS

Any single robot planning algorithm can be used in the
Composite configuration space.

Grid
Cell Decomposition

Probabilistic Roadmap Planner

PROBLEM

The running time of Motion Planning Algorithms is
exponential in the dimension of the configuration space

Thus, the running time is exponential in the number of
robots

Algorithms not practical for 4 or more robots

Solution?

DECOUPLED PLANNING

First, plan a path for each

robot in its own
configuration space

Then, tune velocities of
robots along their path so
that they avoid each other

Advantages?

Disadvantages?

ADVANTAGES

* You don’'t have to deal with

collisions with obstacles
anymore

* The number of degrees of
freedom for each robot has
been reduced to one

DISADVANTAGES

* The running time is still

exponential in the number of
robots

« A solution may no longer be
found, even when one exists
(lncompleteness)

* Solution?

POSSIBLE SOLUTION

* Only plan paths that avoid

the other robots at start and
final position

* Why is that a solution?

- However, such paths may
not exist, even if there is a
solution

COORDINATION SPACE

« Each axis corresponds to a robot

AY L R2
I

________ X R1
- -
0 1

* How is the coordination-space obstacle computed?

CYLINDRICAL OBSTACLES

Obstacles are cylindrical
(also in Composite C-
Space)

Example: 3D-Coordination
Space

Why?

How can this be
exploited?

OPTIMIZATION CRITERIA

There are (in most cases) multiple solutions to multi-
robot planning problems.

Each solution has an arrival time T, for each of the
robots: (T, T,, ..., T)

Select the “best” solution.
What is best?

COST FUNCTION

» cost = max; (T)
» cost =2, (T)

« Minimize cost

PARETO-OPTIMALITY

Other approach: pareto-optimal solutions

A solution (T, ..., T) Is better than (T",, ..., T'y) If
Fel.NIT<T)A(Vjel.NIT,<T)

A solution is pareto-
optimal if there does R

not exist a better solution

Multiple solutions can be
pareto-optimal

Which ones? How many?

Ri

CHALLENGE / OPEN PROBLEM

Distribute computation

Composite Configuration
Space in worst case

But not always necessary
Complete planner

Any ideas?

REFERENCES

- Latombe. Robot Motion Planning. (book)

- Kant, Zucker. Toward Efficient Trajectory Planning: The
Path-Velocity Decomposition

* Leroy, Laumond, Simeon. Multiple Path Coordination for
Mobile Robots: a Geometric Approach

« Svestka, Overmars. Coordinated Path Planning for Multiple
Robots.

- Lavalle, Hutchinson. Optimal Motion Planning for Multiple
Robots Having Independent Goals

« Sanchez, Latombe. Using a PRM Planner to Compare
Centralized and Decoupled Planning for Multi-Robot
Systems

« Ghrist, O'Kane, Lavalle. Computing Pareto Optimal
Coordinations on Roadmaps

University of North Carolina at Chapel Hill 42

