
Comp790-058 Homework 3

Fun with PID and Robot Kinematics

DUE: 11/17/2017 by 11:59:59 PM

 This homework consists of three problems related to planning for mobile robots. For

each question, you will need to write code and answer several questions. Your final submission

should consist of a zip of your code as well as your written report with the requested details for

each question. You are allowed to complete the homework in the language of your choice;

however, it is highly recommended you complete this homework in Python as code is provided

for visualization and simulation in Python. If you strongly prefer another language, please email

me at best@cs.unc.edu so we can setup a robot model and water heater in your language. A

complete set of sample code and resources for the project can be found here

[https://goo.gl/Q4WjVf]. For each problem, it is critical that you not modify the properties of the

provided systems. Do not alter the water heater code, nor the differential-drive robot code.

Your submission will be checked for modification of these files. If you modify the systems in an

unapproved way to make the problems easier it will be considered cheating.

Problem 1: PID Control

Problem 1A) Implement a PID controller for a single input, single output system. Your controller should support

the following:

 Setting each gain at runtime

 Setting / adjusting the time factor (you can use the same time for I and D)

 Setting a dead zone tolerance (range within which PID controller will not update, just return the prior

value)

 Setting upper and lower bounds on the Control Output

The single input / output system you will be controlling is a heating-element for a simulated water heater. Your

Process Variable (PV) will be a temperature in Celsius and your Control Output is the gas proportion from 0 to 1. I

have provided the simulated water heater in Python in the sample code provided above in the Problem1A folder.

The water heater has the following methods:

 SetGasInput(float) - sets the gas input for the next step

 AdvanceTime() - updates the gas input, advances time by 1/4 second

 GetTemp() - returns the temperature of the water in the tank (in c)

You will need to demonstrate that your PID controller can hold the water temperature steady at 35c, 55c, and 75c.

https://goo.gl/Q4WjVf

Specific Deliverables:

 A) Write a PID controller class as described above.

 B) Using your PID controller class and the simulated water heater I have provided, create a main file which

uses your PID controller to control the water heater at the set points described (35c, 55c, 75c). You do not need

to write a simulator; the sample code contains all you need to simulate the heater for this problem.

 C) Write-up: Provide your gains for P, I, and D for your controller. You should have one value for the

entire simulation, not one for each set point. Provide a visualization of your controller's convergence for the three

set points. A graph is sufficient. I have attached a sample graph from lecture slide 64 at the end of the assignment.

Also, indicate the rise time between setting a target temperature and achieving that temperature consistently

(within 5% of set point).

Hint: As we discussed in class, tuning a PID controller is somewhat trial and error. You will do yourself a favor to

define an interface which allows you to do so quickly or at runtime. Python has a multitude of visualization and

interaction libraries, including QT in which the visual code samples are provided. Devising a PID tuner should not

take a substantial amount of time so you may find it worth the effort to write a tuning program.

Problem 1B) Using your PID controller class from 1A, define a controller for a differential drive mobile robot (think

Roomba, as we discussed these in class). The simulated differential drive robot you will work with has two control

inputs which represent the power to each wheel (uL and uR). The state space of the robot is position and

orientation(𝑥, 𝑦, Θ). Your controller class should take as input a desired linear speed and turning rate while

providing the necessary controls for the robot to achieve these. The robot's max linear speed is +/- 1.5 m/s for

each wheel. As a caveat, the robot's power will vary slightly every second, causing minor changes in the wheel

motor response rates. Your controller will need to compensate for the changes (hint… PID).

The kinematic equations of motion for a differential drive robot are provided below:

𝒙̇ =
𝒓𝒘

𝟐
(𝝎𝑳 + 𝝎𝑹)𝒄𝒐𝒔(𝚯) 𝒚̇ =

𝒓𝒘

𝟐
 (𝝎𝑳 + 𝝎𝑹)𝒔𝒊𝒏(𝚯) 𝚯̇ =

𝒓𝒘

𝟐𝒓𝒓

(𝝎 𝑹 − 𝝎 𝑳)

The robot in question has the following model properties:

 Radius (rr): .25 meters Wheel radius(rw): .102 meters max linear wheel speed: 1.5 m/s

A basic visualizer and simulator is provided in the sample code in the folder Simulator. This code includes a base

robot model which can be sub-classed to create your robot. The methods of the robot are documented in the

code. Instructions for running the simulator are provided at the end of the document.

Specific Deliverables:

 A) Write a robot controller which accepts as input target speed and turning rate. You can subclass the

provided differential drive robot, and use your PID controller from problem 1A to accomplish this. You will not

need to write a simulator. The simulator provided is sufficient for this problem.

 B) Write-up: Provide the P, I, and D gains for your controller(s), however many you used for the problem.

Explain how your controller works and how you chose to tackle the problem. Provide a visualization of your

differential drive robot moving at the target speed and turning rate (graphs similar to those in 1A are sufficient for

this problem).

Hint: There are multiple ways to tackle this problem. Differential drive robots turn by imbalance in the wheel

speeds. One approach is to use a PID controller for each wheel. Another is to use a PID controller for linear speed

and a second for heading mixed after (like a quadrotor). You can combine these approaches as well.

Problem 2: Waypoint Following for a Differential Drive Robot

Implement a waypoint follower for your differential drive robot from problem 1. Given the heading and distance to

the next waypoint, determine appropriate set points for the PID controllers you implemented. For Problems 2 and

3, you can assume a waypoint has been successfully visited if the robot travels within 0.5 meters of the waypoint. I

have provided two test sets of waypoints in the Resources/Problem2 folder. The waypoints should be followed in

order and are in the form X [space] Y with one waypoint per line.

Specific Deliverables:

 A) You will need to write a planner for your robot. You can sub-class your robot from Problem1B to

accomplish this, or write a controller which determines the appropriate set controls for the robot. It will also need

to determine when the robot has reached a waypoint and set the next waypoint as the goal. In either case, you

will not need to write a simulator for this problem. You can subclass the simulator to add extra features, but you

should not need to implement an entire new simulator.

 B) Provide a visualization of your robot travelling through the two sets of waypoints. This should be a

video. The provided simulator visualization is sufficient.

 C) Write-up: provide a short description of your waypoint follower code, maneuver choice (if used), and

the time your robot took to complete each set of waypoints. The fastest robot time (with video verification) will

receive bonus points.

Hint: There are multiple ways to proceed to a goal. Your robot can choose different maneuvers to accomplish the

task. For example, the robot can turn in place to face the goal then travel towards the goal on a direct heading, or

simultaneously correct heading and speed. Choosing the right maneuver for a given set of steering and speed is

the key to quickly and effectively completing the course. Also, when making tight turns, lower speed can be

advantageous. Experiment with your robot's maneuver choices to find the best combination.

Problem 3 [Updated 11/12/2017 BONUS PROBLEM]: Implement a car-like robot and pure-pursuit controller

For this problem, you will implement a simulated car-like robot using the single-track bicycle equations of motion

we discussed in class. Your robot must accept steering and speed as control (𝑢𝑠, 𝑢𝜙). You do not need to account

for dynamics, nor do you need to implement acceleration or steering rates. Assume the robot can instantly achieve

changes to steering and speed. Also, choose reasonable values for the length, max speed, and max steering of the

vehicle. Your robot does not need to be capable of travelling at car-like speeds, but should support a max speed of

at least 5 m/s. Your robot should also support assignment of a goal position to which it will travel by pure-pursuit

(i.e. heading towards the goal at all times on an arc). You can use the robot provided for problem 1B as a model for

your car-like robot should you choose to use the provided simulator.

The single-track bicycle equations of motion are provided below:

𝒙̇ = 𝒖𝒔𝒄𝒐𝒔(𝚯) 𝒚̇ = 𝒖𝒔𝒔𝒊𝒏(𝚯) 𝚯̇ =
𝒖𝒔

𝑳
𝒕𝒂𝒏(𝒖𝝓)

You will need to choose reasonable values for:

 Interaxle length (L) max/min steering (𝜙min ≤ 𝑢𝜙 ≤ 𝜙𝑚𝑎𝑥) max/min speed (𝑠𝑚𝑖𝑛 ≤ 𝑢𝑠 ≤ 𝑠𝑚𝑎𝑥)

Specific Deliverables:

 A) Using the differential-drive robot as a guide, write a new robot class for your car-like robot. You do not

need to create a simulator for this problem, only a robot. You can ignore the functions related to power shift. You

will need to implement the UpdateConfig function to evolve the robot forward according to its equations of

motion. You do not need a PID controller for this problem. The robot can instantly achieve new controls and has

no uncertainty, therefore a PID controller is not needed, but can be used.

 B) Using the QTDifferentialDriveRobot class as a guide, write a visual representation for your car-like

robot. This can be as simple as a single rectangle, but is needed to visualize the robot.

 C) Write a waypoint follower for your car-like robot. This is similar to problem 2.

 D) Provide a visualization of your car-like robot travelling through two sets of waypoints you have created.

These should be videos. The provided visualizer is sufficient for these videos.

 D) Write-up: Describe your controller. How did you decide the appropriate steering and speed for

reaching a waypoint? Describe your choice of relevant model parameters. Provide two sets of waypoints you chose

with your code submission. Provide the time required for your robot to travel each set of waypoints.

Hint: I am not providing waypoints for this problem. You will need to choose reasonable waypoints for your car to

track. Remember, there are kinematic limits to the maneuvers your vehicle can perform. Do not choose waypoints

which are within the minimum radius the vehicle can turn, or your car will never achieve the waypoints!

Supplemental Materials

Python Simulator Code

To use the python tools provided, you will need the following python version and packages:

 Python 3+ (tested on 3.6)

 pyQT5

 Numpy

You may also need

 Pyqt5-tools

The easiest way to accomplish this in windows is to install the latest WinPython(http://winpython.github.io/).

Most linux distributions provide packages for pyQT and numpy. Mac-os may be more complicated, but there are

homebrew packages available.

UPDATED 11/1/2017

I have provided a more thorough simulator, as I found the first version difficult to work with. You can use either for

your project, but I believe the newer simulator is much easier.

To run KinematicSim2d:

 See the readme file in the simulation. But in general, from the SampleCode folder, run the Following:

python -m KinematicSim2d.scenes.[your_scene_name]

To run the old sim:

To run the simulator, navigate to the SampleCode\PreSimulator folder. Run the following command:

Python QTSimulator.py

By default the differential drive robot will be attempting to trace a circle.

Sample graph

Example of an error over time graph for a PID controller from the lecture. Yours should show different set points.

Help & Relevant tutorials / materials

More information on relevant topics can be found here:

PID:

 https://www.dataforth.com/introduction-to-pid-control.aspx

 https://en.wikipedia.org/wiki/PID_controller

Differential-drive and car-like kinematics:

 http://planning.cs.uiuc.edu/

 Chapter 13

