LOCAL NAVIGATION 1

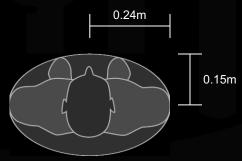
LOCAL NAVIGATION

- Dynamic adaptation of global plan to local conditions
 - A.K.A. "local collision avoidance" and "pedestrian models"

LOCAL NAVIGATION

- Why do it?
- Could we use "global" motion planning techniques?
 - http://grail.cs.washington.edu/projects/crowdflows/
 - http://gamma.cs.unc.edu/crowd/
- Issues
 - Computationally expensive
 - Assumes global knowledge of dynamic environment

- Limited knowledge


 local techniques
 - It is reasonable to assume agents can have global knowledge of static environment
 - UAVs can have maps
 - Robots can know the building they operate in
 - Access to google maps, etc.
 - But can they know what is happening out of sight?
 - People often drive into traffic jams because they didn't know it was there (until too late)

- What is local?
 - What information matters most?
 - Imminent interaction
 - What information can you know?
 - Line-of-sight visibility
 - Aural perception (less precise, but goes around corners)
 - Explicit communication (information passing)

- Imminent interaction
 - Define temporally (ideal)
 - What can I possibly interact/collide with in the next τ seconds?
 - Anything beyond τ is unimportant and may lead to invalid predictions

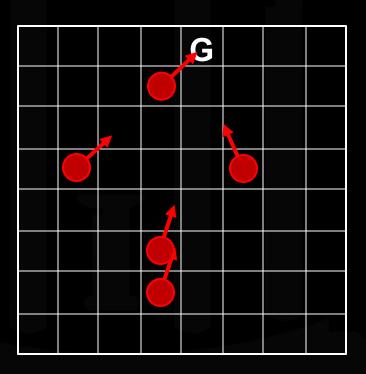
- Assume approximately uniform speeds
 - Temporal locality → spatial locality
 - Distance simply time * speed
 - PROS
 - Seems plausible
 - Computationally efficient spatial queries
 - CONS
 - Poor for scenarios with widely varying speeds
 - Pedestrians vs. cars
 - This is the common practice

- Computational constraints
 - Assumption: spatial local neighborhood: r = 5 m
 - Roughly 3.75 seconds at average walking speed.
 - Average area of person: A = 0.113 m²
 - Maximum number of neighbors: ~700
 - Too many
 - Pick the k-nearest

LOCAL COLLISION AVOIDANCE

- Given
 - Preferred velocity
 - Local state
- Compute
 - Collision-free (feasible) velocity

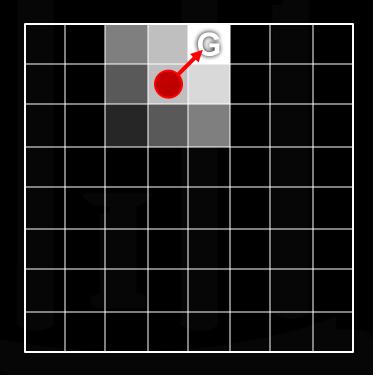
LOCAL COLLISION AVOIDANCE

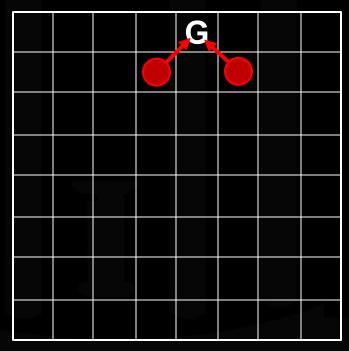

- Models define a mechanism for balancing the two factors
 - Represent the effect of preferred velocity
 - Represent the effect of dynamic obstacles
 - Model the interactions of the two

LOCAL COLLISION AVOIDANCE

- Four classes of models
 - Cellular Automata
 - Social Forces
 - Geometric
 - Miscellaneous

- Game of Life
 - http://www.bitstorm.org/gameoflife/
- Applications in biology and chemistry
- Used in vehicular traffic simulation
 - (Cremer and Ludwig, 1986)
- Borrowed into pedestrian simulation

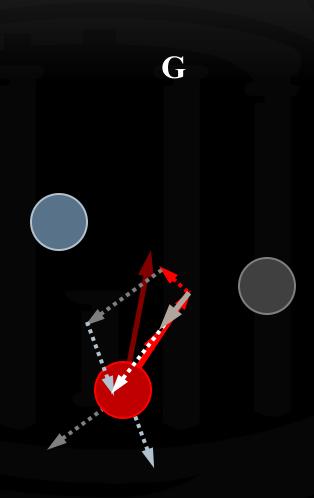

- Decomposition of domain into a grid of cells
- Agents in a single cell
 - Cell holds one agent
- Simple rules for moving agents toward goal


- Blue & Adler, (1998, 1999)
 - Simple uni- and bi-directional flow
 - Heavily rule-based
 - Rules for determining lane changes
 - Rules for "advancing"
 - Rules are all heuristic and carefully tuned to an abstract, artificial scenario
 - "lane" changes
 - Multiple-cell movements

- Statistical CA Burstedde et al., 2001
 - Accounting for pref. vel
 - Pref. vel → matrix of probabilities
 - Direction of travel selected probabilistically (target cell)

- Statistical CA Burstedde et al., 2001
 - Accounting for neighbors
 - Rules
 - If target cell is already occupied, don't move
 - If two agents have the same target, winner based on relative probabilities (loser stays still)

- Statistical CA Burstedde et al., 2001
 - Complex behaviors from "floor fields"
 - Mechanism for "long-range" interaction
 - Contributes to probability matrix
 - Leads to aggregate behaviors
 - Lane formation, etc.


- Implications
 - Homogeneous pedestrians
 - "Same" speed, same abilities, same floor fields
 - Horizontal/vertical vs. diagonal
 - Large timestep
 - Cell size ~ 0.4 m → 0.4m/time step → 1.34 m/s in ~3 time steps → timestep = 0.3 s
 - Highly discretized paths (zig zags)
 - Density limits due to simple collision handling
 - Can't move into currently occupied cells

- Extensions
 - Hexagonal floor fields [Maniccam, 2003]
 - Replace quads with hexagons
 - Six directions with uniform speeds
 - Multi-cell agents [Kirchner et al., 2004]
 - Smaller cells
 - Agents occupy multiple cells
 - Agents move multiple cells
 - Deemed too expensive to be worth it

- Extensions
 - Real-coded CA [Yamamoto et al., 2007]
 - Support heterogeneous speeds
 - Improve trajectories
 - (Handling collisions unclear in the paper)

- Still alive and well
 - Tawaf [Sarmady et al., 2010]
 - High-level behaviors [Bandini et al., 2007]
 - Update algorithm analysis [Bandini et al., 2013]

- Agent with preferred and actual velocities.
- "Driving" force pushes current velocity towards preferred velocity.
- Neighboring agents apply repulsive force.
- Forces are linearly combined and transformed into acceleration.
- Velocity changes by the acceleration.

- Arose in the 70s [Hirai & Tarui, 1975]
 - Partially inspired by sociologists attraction to field theory
- Resurgence in the 90s [Helbing and Molnár, 1995]
 - Defined many of the traits that are seen in many of the current models
- These are not potential field methods, per se
 - They planning doesn't follow the gradient of the field
 - The field implies an acceleration

- Driving force
 - $F_d = m(v^0 v)/\tau$
- Exponential repulsive forces
 - $F_r = Ae^{(-d/R)}$
 - A Gaussian function where $\sigma = R/sqrt(2)$
 - Infinite support (theoretically)
 - Compact support practically: 6σ
 - Exponential evaluated at 3σ ≈ 0.011

- Elliptical contours of repulsion field
 - Models personal space in front is more important than to the side
 - Treats backwards more important than side
 - Implies orientation (defined as the direction of motion)
 - Undefined for stationary agents

- Weighted directions
 - Relative to direction of preferred velocity
 - Discontinuous: 1 or c, based on direction

- Attractive forces
- Random fluctuations

- Implications
 - Full response is linear combination of individual responses
 - 2nd-order equation
 - The velocity you pick depends on the time step
 - Dense populations → stiff systems
 - Smooth compact support → high derivative at small distances
 - Parameter tuning
 - Force magnitudes depend on circumstances

SOCIAL FORCE - [HELBING & FARKAS, 2000]

- Social force simulation of escape panic
 - Removed:
 - Direction weighting
 - Elliptical force fields
 - Random perturbations
 - Attractive forces
 - Added compression and friction forces

- Johansson et al., 2007
 - Restores elements from the 1995 paper
 - Directional weight (varies smoothly)
 - Elliptical equipotential lines
 - Introduces relative velocity term
 - Relative velocity term

- Chraibi et al., 2010
 - Generalized Centrifugal Force (GCF)
 - Includes a relative velocity term
 - Directional weight
 - Repulsive force based on inverse distance
 - Changes representation of agents to elliptical
 - Shape of ellipse changes w.r.t. speed
 - Faster → longer, narrower ellipse
 - Shorter → narrow, wider ellipse

- Predictive
 - Karamouzas, et al. 2009 and Zanlungo, et al., 2010
 - Compute force based on predicted interactions
 - Computation of individual forces is similar
 - Karamouzas adds new method for combining forces
 - Iterative calculation and combination
 - Does not guarantee that they won't cancel each other out

- Force-based approaches
 - Other models which use forces
 - Forces are derived from ad hoc rules
 - HiDAC
 - OpenSteer
 - Autonomous Pedestrians

QUESTIONS?

