Comp 790-058 Lecture 07
Autonomous Driving: Planning

October 3, 2017
Andrew Best
University of North Carolina, Chapel Hill
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Administrative

+ Homework due:
©® 11:59 PM October 4t (tomorrow)
+ Project Proposals:
® Next week
® should make a WWW page of your project topic, 4 parts:
+ 1. What is the goal of your project? What is your motivation?
+ 2. What is the prior state of the art? Please include pointers to related work or WWW sites related to the prior work?
+ 3. What do you plan to accomplish over the semester?

+ 4. What is your timeline between Oct. 10 - Dec. 87 Remember the final project presentation would be after Dec. 8
deadline. I want you to come up with 2 week milestones (between Oct. 10 - Dec. 8) and put them on the WWW page?
That way | want to make sure that you have thought in detail about the todo list for the project.

+ 15-20 minute presentation slot on Oct. 10



Main ldea

+ Motion Planning: term used in robotics for the process of breaking down a
desired movement task into discrete motions that satisfy movement
constraints and possibly optimize some aspect of the movement



Main ldea

+ Motion Planning
® Fuse prior information, sensing, mapping, etc. to generate:
+ Set of actions leading from some initial state to a goal
+ OR continuous action function from initial state to goal
® Motion planning for navigation Is:
+Hierarchical
+ Recurrent



Structure

+ Recap
O Perception
® Localization
® Planning
+ State, Kinematics, and Dynamics Models
+ Planning
+ AutonoVi-Sim

e THE UNIVERSITY
II I of NORTH CAROLINA
1

at CHAPEL HILL



Autonomous Driving

+ Autonomous vehicle: a motor vehicle that uses artificial intelligence,
sensors and global positioning system coordinates to drive itself without the
active intervention of a human operator

+ Focus of enormous investment [$1b+ in 2015]

THE UNIVERSITY

II II Qf NORTH CAROLINA
é at CHAPEL HILL



Autonomous Driving: Levels of Autonomy

+ 0: Standard Car
+ 1. Assist in some part of driving
® Cruise control
+ 2: Perform some part of driving
® Adaptive CC + lane keeping
+ 3: Self-driving under ideal conditions
® Human must remain fully aware
+ 4: Self-driving under near-ideal conditions
® Human need not remain constantly aware
+ 5: Outperforms human in all circumstances
— THE UNIVERSITY
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Autonomous Driving

+ Urban driving is particularly challenging

ASpeed
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_ Circuit
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Autonomous Driving: Main Components

Environmental
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Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.
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Autonomous Driving: Main Components

+ Perception

® Collect information and extract relevant knowledge from the
environment.
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Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.



Autonomous Driving: Main Components

+ Planning

® Making purposeful decisions in order to achieve the robot’s higher order
goals
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Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.



Structure

+ Recap
® Perception
® Localization
® Planning
+ State, Kinematics, and Dynamics Models
+ Planning
+ AutonoVi-Sim
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Autonomous Driving: Perception using LIDAR

+ Light Detection and Ranging

® Illuminate target using pulsed laser lights, and measure reflected pulses
using a sensor
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Autonomous Driving: Perception using LIDAR

+ LIDAR In practice
® Velodyne 64HD lidar
+ https://www.youtube.com/watch?v=nXlgv_k4P8Q
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https://www.youtube.com/watch?v=nXlqv_k4P8Q

Autonomous Driving: Perception using Cameras

+ Camera based vision
® Road detection
+ Lane marking detection
+ Road surface detection
® On-road object detection
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Autonomous Driving: Perception usina Cameras

[road_first]... Prediction

+ Sensing Challenges
® Sensor Uncertainty
® Sensor Configuration
® Weather / Environment

\'R.' 00'598

-1.46

fset: 0.21 wdth filt. 3,37 hgp 3.35 road 3.3

e THE UNIVERSITY
II I of NORTH CAROLINA
1

—— at CHAPEL HILL



Structure

+ Recap
O Perception
® Localization
® Planning
+ State, Kinematics, and Dynamics Models
+ Planning
+ AutonoVi-Sim
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Autonomous Driving: Vehicle Localization

+ Determining the pose of the ego vehicle and measuring its own motion
+ Fusing data

® Satellite-based navigation system

® Inertial navigation system
+ Map aided localization

O® SLAM
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Structure

+ Recap
O Perception
® Localization
® Planning
+ Kinematics & Dynamics Models
+ Planning
+ AutonoVI-Sim
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Autonomous Driving: Planning

+ Compare to Pedestrian Techniques:

® Route Planning: road se

® Path Planning: preferred

ection (global)
lanes (global)

® Maneuver-search: high level maneuvers

(local)

® Trajectory planning: Lowest level of

planning (local)
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Fig. 2. A flow chart of planning modules.
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Structure

+ Recap
+ State, Kinematics, and Dynamics Models
O State Space
® Kinematic constraint models of the vehicle
® Dynamic constraint models of the vehicle
+ Planning
+ AutonoVI-Sim
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Autonomous Driving: State Space

+ “The set of attribute values describing the condition of an autonomous
vehicle at an instance in time and at a particular place during its motion is
termed the ‘state’ of the vehicle at that moment”

+ Typically a vector with position, orientation, linear velocity, angular
velocity

+ State Space: set of all states the vehicle could occupy

22



Autonomous Driving: State Space

+ “The set of attribute values describing the condition of an autonomous
vehicle at an instance in time and at a particular place during its motion is
termed the ‘state’ of the vehicle at that moment”

+ Typically a vector with position, orientation, linear velocity, angular
velocity

+ State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

+ Recall Pedestrian Planning:

® Roadmap Is essential a graph
of potential agent states
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Autonomous Driving: State Space

+ Examples:
® 3D space with velocity
+(Pws Pys P2y Oy, Oy, 0,5, Vi, Wy, V,, 004, 00,,0,)
+(3,6,3,@)
® 2D space with acceleration
+ (v, Dy, 0, Uy, Uy, 0, Ay, a,, @)
+(p,0,v,w,4d,a)
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Autonomous Driving: State Space

+ Examples:
® 2D space with blinker booleans
+(p,0,v,w,bl;,bl.)

O State contains everything we need to describe the
robot’s current configuration!

® Neglect some state variables when planning

e THE UNIVERSITY
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Structure

+ Recap
+ State, Kinematics, and Dynamics Models
O State Space
® Kinematic constraint models of the vehicle
® Dynamic constraint models of the vehicle
+ Planning
+ AutonoVI-Sim
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Autonomous Driving: Holonomicity

+ “Holonomic” robots

® Robots whose motion capability is independent of
their orientation

® Controllable DOF == total DOF
+ Examples:

® Quad-rotors

® Omni-drive base

O https://youtu.be/9ZCUxXajzXs
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https://youtu.be/9ZCUxXajzXs

Autonomous Driving: Holonomicity

4+ Cars are “non-holonomic” robots
® Typically 5 values describing physical

+ (2 Cartesian coordinates, orientation, linear
speed, angular speed)

O 2 “kinematic’ constraints

+ Can only move forward or backward, tangent
to body direction

+ Can only steer in bounded radius

e THE UNIVERSITY
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Kinematic Constraints

4+ Kinematics of Motion

® “the branch of mechanics that deals with pure motion,
without reference to the masses or forces involved In it”

® Equations describing conversion between control and
motion

® Control: inputs to the system
+ In vehicle: steering and throttle
+ Also referred to as “Action” in literature

30



Autonomous Driving: Holonomicity

+ kinematic and dynamic constraints can be considered
“rules” governing the state evolution function

+ For state s; € S, control inputu; € U, timet € T
D F(sy ug, At) = Se4q
+ EX:

® A car cannot turn in place. No amount of steering
will accomplish this

® A Roomba can turn in place

N THE UNIVERSITY
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Kinematic Constraints

+ Kinematic models of a car
® Single-track Bicycle (or simple car model)
+3-DOF configuration: (x,y,0)
+2-DOF control: steering (¢), speed (V)
+ Full state: (x,y,0,v, o,L)
® Equations of motion:
+px =v=cos(8) py,=v=*sin(0)

6 = % * tan(¢)

Figure 13.1: The simple car has three degrees of freedom. but the velocity space

P § THE UNIVERSITY at any configuration is only two-dimensional.
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Kinematic Constraints

4+ Kinematic models of a car
® Single-track Bicycle example

O https://www.youtube.com/watch?v=TyW1BPpHy
18

® Kinematic robot simulator provided as part of
HW3

e THE UNIVERSITY
II I of NORTH CAROLINA
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https://www.youtube.com/watch?v=TyW1BPpHy18

Kinematic Constraints

+ Kinematic models of a car
® Extended Car w. linear integrators
® 6-DOF configuration (x,y,0, ¢,v,w)
+2-DOF Control:
steering rate (ug), acceleration (u,)
+Full state (x,y,0,v, ¢, w, ug, u,, L)

e THE UNIVERSITY
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Kinematic Constraints

+ Extended Car w. linear integrators
® Equations of motion
+p, = v *cos(0) Py = v *x sin(0)
g — tan(¢)

L
V= 1U,

O Steering is continuous C!
® Velocity continuous
® Control Is more complex

gb=a) W = g

e THE UNIVERSITY
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Kinematic Constraints

+ Example: Stopping the car
® Simple-car: u, = 0
O LI-car u, = —v iff max(U,) = v else max(U,,)
+ Car will not necessarily stop right away

4+ Error increases as we increase the number of
Integrators

e THE UNIVERSITY
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Kinematic Constraints

+ Kinematic models of a car
® Extended Car w. linear integrators
O https://www.youtube.com/watch?v=3Q31mA5A|-

C
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https://www.youtube.com/watch?v=3Q31mA5Aj-c

Structure

+ Recap
+ State, Kinematics, and Dynamics Models
O State Space
® Kinematic constraint models of the vehicle
® Dynamic constraint models of the vehicle
+ Planning
+ AutonoVi-Sim
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Dynamic Constraints

+ “the branch of mechanics concerned with the motion
of bodies under the action of forces.”

+ Tires subject to lateral and longitudinal force during
steering / accelerating

O If lateral force exceeds friction force
+ Fishtailing

® If longitudinal force exceeds friction force
+ Peel out / skid

e N THE UNIVERSITY
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Dynamic Constraints

+ No longer directly control acceleration and steering
® Apply engine force
® Apply steering force

+ Diminishing returns on each force at limits of control

e THE UNIVERSITY
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Dynamic Constraints

+ Dynamic Bicycle model with linear tires
® No load transfer between tires
O Larger state space including tire stiffness

+ E, longitudinal force
+ F, lateral force
+ mmass
+ I, yaw moment of intertia
Fipcosd — Fyrsind +Fy = m(ve— vy )
Fyrsin o+ Fyrcos 0 + Fy = m(y+vy)
(Fyfsind + Fyrcosd)b—Fyc = L
F, =Cq0
e, THE UNIVERSITY ig. L.
im Qf NORTH CAROLINA 41
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Dynamic Constraints

+ Dynamic Bicycle model with linear tires
© F, lateral force on tire
® F, longitudinal force on tire
© ar “slip angle” of tire
® § steering angle

e THE UNIVERSITY
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Dynamic Constraints

+ Dynamic constraints
® Correcting for slip
O https.//www.youtube.com/watch?v=itggGQu_ECc
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https://www.youtube.com/watch?v=itggGQu_ECc

Dynamic Constraints

+ Models increase in complexity as needed for
performance tuning
® Aerodynamic drag force F,.q = (C.A,vg)/16

©® Maximum engine torque 3

=1+ v —12
m 1—1—6{_4_)

+ Each layer of dynamics:
® Increases accuracy of model
® Increases computational complexity
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Dynamic Constraints

+ Dynamic constraints
® Adjusting for drag & lateral forces
O https://youtu.be/tesD4F-HOXxs?t=1m24s
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https://youtu.be/tesD4F-HOxs?t=1m24s

Dynamic Constraints

4+ Extended vehicle with load transfer
mi = F,, + Fy, + Fp,, + Fy,, — kad®
mij = —mat + Fy,+Fy, +F, +F_
hb — G(Fyn + Fy;r) - b(Fyr: + wa)a

bF, —eF, eF, __ bF, —eF, | eF,

F. = — F. —
E 2(a +b) 2c’ i 2(e +b) 2c '
el +eF, efF, e, +eF, eF,
F., K = &y g = 1
2(a +b) 2c 2(e + b) 2¢
J + ar g — b
ﬂf = . - {E: . = .
) i I
Jle=— THE UNIVERSITY
II II of NORTH CAROLINA
1 at CHAPEL HILL
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Structure

+ Recap
+ State, Kinematics, and Dynamics Models
+ Planning

® Mission Planner

® Behavior Planner

©® Maneuver Planner / Motion Planner
+ AutonoVi-Sim
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Autonomous Driving: Main Components

+ Planning

® Making purposeful decisions in order to achieve the robot’s higher order
goals

Environmental

Data Perception ~| Perception
| Localization

—_— Sensors

Environment Model

Data
— and Venicle Pose
E i l Mission Planning
c — V2V Data——p> Planning Behavioral Planning
o
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Figure 2. A typical autonomous vehicle system overview, highlighting core competencies.



Structure

+ Recap
+ State, Kinematics, and Dynamics Models
+ Planning

® Mission Planner

® Behavior Planner

©® Maneuver Planner / Motion Planner
+ AutonoVi-Sim
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Mission Planner (Route Planning)

+ Determine the appropriate macro-level route to take
+ Typically road level i.e. which roads to take

+ Katrakazas: “Route planning is concerned with finding the best global route from a
given origin to a destination, supplemented occasionally with real-time traffic
information™

e THE UNIVERSITY
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Mission Planner (Route Planning)

+ Pendleton: “considers high level objectives, such as assignment of pickup/dropoff
tasks and which roads should be taken to achieve the task”

+ Typical approaches:
©® RNG (Road-network Graph)
+ A*

+ Dijkstras —

® Scalepoorly! ——— ¥

e N THE UNIVERSITY : | |
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Mission Planner (Route Planning)

TT11 T T T T T ) OO A SR T T T ] T T TTTTT
:<—— Dijkstra’s Algorithm
. . 1.000 =¢— Bidirectional Search
+ Massive-scale algorithms needed :
for routing 100 | | — I
(customization) O\ =
i o)
10 d
Rl - - Rl = i - (customization) /Reach
+ 18 million vertices, 42.5 million edges 7z i1 5 ke
@ 1E CALT O [ Arc I[:lags C(F-H
I = E i ~o.._HNR
® Partial Western Europe dataset £ P o L s I
& i ~ HH* o REAL ReachFlags
S 0.1
& g e e X cn \
(customization) ® O— SHARC
HPML
001 = \ =
CHASE 50 1r1c o 7
0.001 IRl .\:/. TNR with Arc Flags
Bast, H., Delling, D., Goldberg, A., Miller-Hannemann, M., Pajor, T., f .\°+—0\
Sanders, P., ... Werneck, R. F. (2015). Route Planning in Transportation Hub Labels ®
Networks. Microsoft Research Technical Report, 1-65. 0.0001 Table Lookup o E
(PHAST) :
| Ll 1 1 | 1 Pl ! IR | ] |
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Mission Planner

+ High Performance Multi-Level (Delling et al.)
® Hierarchical decomposition of input graph
® CompUte Iarge Set Of partlal graphs FIGURE 1. Hierarchy due to graph decomposition: components
0] Optlmlze SUbgraphS (darker shades) with belonging wrapped components (lighter

shades) at levels 1 (smaller components) and 2 (larger compo-
nents).

+ Remove “unused” edges
+ Reorder graph to prioritize shortest paths

e THE UNIVERSITY
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Mission Planner

+ HPML (Delling et al.) o
©® Optimize subgraphs \ .
emove “unused” edges N
+R 194 d” d @ \f/ \

| (°
O\

________

s—-—-.._._,_@ @":—..,;:‘"\“\;;i. ' @
o TN P
+ Reorder graph to prioritize @ \_/ ——® @< JENTHE
shortest paths v T T
. o —* "“—*-—-—-—n@ @_- 1':--__-_---__-_-_-_:::=
® Queries ~40us on 18 million
vertices Ficurg 5. Constructing equivalent graphs. Left: sample graph;

highlighted edges are contained in a shortest o-4 path. Right:
belonging search graph with edge compression applied; dotted and

Delling, D., Holzer, M., Kirill, M., Schulz, F., & Wagner, D.
(2008). High-Performance Multi-Level Routing, 2, 1-19.
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Mission Planner T

+ HPML (Delling et al.) )

T 1k |

: |
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10 A B B R SR
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Dhjkstra rank

(a) Search space in terms of relaxed edges.

Each dot depicts for one query the number of

relaxed edges in relation to its Dijkstra rank.
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Structure

+ Recap
+ State, Kinematics, and Dynamics Models
+ Planning

® Mission Planner

® Behavior Planner

©® Maneuver Planner / Motion Planner
+ AutonoVi-Sim
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Behavior Planner

+ “makes ad hoc decisions to properly interact with other agents and follow rules
restrictions, and thereby generates local objectives, e.g., change lanes, overtake, or
proceed through an intersection”

© Finite State Machines
© Finite time maneuvers

e\ THE UNIVERSITY S R
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Behavior Planner

4+ Finite State Machines

O Set of “states” and transition functions
between them

® Separate from configuration state ® Routing Driven Transition

@Optimization Driven Transition
B Maneuver Driven Transition

Driving

Fig. 2. Finite State Machine: We highlight different behavior states that
are determined by the routing and optimization algorithms. When executing
turns. the routing algorithm transitions the behavior state to a turning state.
When the optimization-based maneuver algorithm plans a lane change. the
behavior state is transitioned to merging.

e N THE UNIVERSITY
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Behavior Planner

+ Example from crowd sim
+ Al Technique

® Defines a set of States and Transition functions between them
® Allows us to represent complex behaviors with simple components

Find
Luggage

Luggage Reached

- Get
Luggage

Luggage Obtained

No Luggage

}Auendant

Arrives
Wait
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Behavior Planner

+ FSMs limited in some cases
©® What to do In unseen situations?
+ Real-time decision making [Furda et al 2011]

- )

& = \
k) :
&/ World Model Driving
\06‘ Maneuvers
x AN N\
&/ Object Path
7 Planning
&

5® Perjeption
,5\9\ Sensor V2V/\_/2'} Localization Low-Level Vehicle
Technology Communication  Technology, Actuators Control \

Furda, A., & Vlacic, L. (2011). Enabling safe autonomous driving in real-world city
traffic using Multiple Criteria decision making. IEEE Intelligent Transportation

Systems Magazine, 3(1), 4-17. http://doi.org/10.1109/MITS.2011.940472
THE UNIVERSITY

II II of NORTH CAROLINA
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o | @ 2E commands.
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Behavior Planner

+ Limited discrete maneuver curve example
O https://youtu.be/5SATo6hheVIU
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Structure

+ Recap
+ State, Kinematics, and Dynamics Models
+ Planning

® Mission Planner

® Behavior Planner

©® Maneuver Planner / Motion Planner
+ AutonoVi-Sim
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Maneuver Planner / Motion Planner

+ Pendleton: generates appropriate paths and/or sets of actions to achieve local
objectives, with the most typical objective being to reach a goal region while avoiding
obstacle collision

e THE UNIVERSITY
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Motion Planner

+ Generally two stages:

® Path planner - Computes the geometric representation of the path to be
followed. l.e. the curve, spline, track, line, etc. we are following

® Trajectory Planner / Path tracker - Computes the specific physical targets
for following the path. l.e. velocity, acceleration, heading, steering, etc.
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Motion Planner

+ Pendleton: generates appropriate paths and/or sets of actions to achieve local

objectives, with the most typical objective being to reach a goal region while avoiding

obstacle collision

. . i . . . B . . .

THE UNIVERSITY
of NORTH CAROLINA
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Motion Planner
+ How do we evaluate them?
® Complexity (computation cost)
+ limits how frequently we can replan
+ NEVER get it perfectly right, so we focus on replanning as fast as possible

® Completeness (likelihood that a solution will be found if one exists)
The piano-movers problem is PSPACE-HARD
must guarantee safety
I.e. must be sure we can deal with error and recover
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Motion Planner
+ Piano mover’s problem
® https://youtu.be/cXm3WW-geD8

e N THE UNIVERSITY
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Motion Planner

+ Basic overview
® Complete planning
® Combinatorial Planning
® Sample-Based planning

N THE UNIVERSITY
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Motion Planner
+ Basic overview
® Complete planning - continuous plan in configuration space
+ Exponential in dimensions of c-space (curse of dimensionality)
+ "Complete"

® Combinatorial Planning - discrete planning over an exact decomposition of the
configuration space

® Sample-Based planning:

e THE UNIVERSITY
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Motion Planner
+ Basic overview
® Complete planning

® Combinatorial Planning - discrete planning over an exact decomposition of the
configuration space

+ Exponential in dimensions of c-space discretization (curse of dimensionality)
+ "resolution complete"
® Sample-Based planning

e THE UNIVERSITY
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Motion Planner
+ Basic overview
® Complete planning
® Combinatorial Planning

® Sample-Based planning - Sample in space to find controls / positions which are
collision free and linked

+ Probabilistically complete
O Some “probabilistically optimal”
+ NOT exponential in configuration space

e THE UNIVERSITY
II II of NORTH CAROLINA -
é at CHAPEL HILL



Motion Planner: Combinatorial Planners

+ General Approaches:
® convex obstacle spaces
+NP-Hard

O visibility graph (shortest path)

® voronol diagram (highest clearance)

® obstacle-cells using boundaries

and borders

Deits, R., & Tedrake, R. (2015). Computing large convex regions of obstacle-

free space through semidefinite programming. Springer Tracts in Advanced
Robotics, 107, 109-124. http://doi.org/10.1007/978-3-319-16595-0_7

THE UNIVERSITY
Of NORTH CAROLINA
at CHAPEL HILL
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Motion Planner: Combinatorial Planners

+ Driving Corridors:
® Decompose lanes into polygonal lanelets

® Represent obstacles as polygonal bounding

boxes or oveslapRingreiskS r.
® Adjust Ianelets{f‘;g%"Ir §-§%§g§e-ff :

] 1 ring
constralnts 109-124. http://doi.o

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., ...
Zeeb, E. (2014). Making bertha drive-an autonomous journey on a historic route.
IEEE Intelligent Transportation Systems Magazine, 6(2), 8-20.
http://doi.org/10.1109/MITS.2014.2306552

e THE UNIVERSITY
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Motion Planner: Combinatorial Planners

+ Driving Corridors:
® Decompose lanes into polygonal lanelets

® Represent obstacles as polygonal bounding
boxes or overlapping discs

® Adjust lanelets to obstacle
constraints

FIG 10 Constraints for an oncoming Object (cyan). The trajectory is only
constrained by polygons of corresponding color.

N THE UNIVERSITY
II I of NORTH CAROLINA
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Motion Planner: Combinatorial Planners

+ Driving Corridors:
® Decompose lanes into polygonal lanelets

® Represent obstacles as polygonal bounding
boxes or overlapping discs

® Adjust lanelets to obstacle constraints

{a) (b

Figure 5: Building constraint polygons from sensor data,

——, THE UNIVERSITY
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Motion Planner: Combinatorial Planners

+ Driving Corridors:
O https://youtu.be/GfXg9ux4xUw?t=2m5s

e N THE UNIVERSITY
II I of NORTH CAROLINA
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Motion Planner: Combinatorial Planners

+ Darpa Urban Challenge:
® BOSS: kinodynamic reachable set

® Trajectory planner generates candidate trajectories
and goals

+ Done by precomputation of many curves
© “best” trajectory chosen by optimization

Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., ...
Darms, M. (2009). Autonomous Driving in Traffic: Boss and the Urban
Challenge. Al Magazine, 30(2), 17-28. http://doi.org/10.1002/rob

e N THE UNIVERSITY

II II of NORTH CAROLINA
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Motion Planner: Combinatorial Planners

+ Darpa Urban Challenge:
® BOSS: kinodynamic reachable set

sampling in state space

initial state terminal states

e THE UNIVERSITY

II II of NORTH CAROLINA 78
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Motion Planner: Combinatorial Planners

+ Darpa Urban Challenge:
® BOSS: kinodynamic reachable set
O https://www.youtube.com/watch?v=IULI63ERek0&t=89s

® Other combinatorial approaches:
O https://www.youtube.com/watch?v=3FNPSId6Lrg

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Motion Planner: Combinatorial Planners

+ Grid Decomposition approaches:
® Generate cellular-grid representation of local space
® Cells encode probability of occupancy
® Moving obstacles propagate occupancy probability

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Motion Planner: Combinatorial Planners

Broggi, A., Medici, P., Zani, P,, Coati, A., & Panciroli, M. (2012). Autonomous

+ G rl d DeCOm pOSItI Oﬂ apprOaCheS vehicles control in the VisLab Intercontinental Autonomous Challenge. Annual
. Reviews in Control, 36(1), 161-171. http://doi.org/10.1016/j.arcontrol.2012.03.012
® Vehicle presence propagates forward
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Motion Planner: Combinatorial Planners

+ Grid Decomposition approaches:
O https://youtu.be/CRQfhhICS|0
O https://youtu.be/MzpBzrtEGrA

N THE UNIVERSITY
II I of NORTH CAROLINA
1

at CHAPEL HILL
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Motion Planner: Combinatorial Planners

+ Correct by construction planners:

O Conce
+Ru

4+ Ru]

ot: Encode discrete rules and available actions
es assigned priority in Finite Linear Temporal Logic

les define “cost” penalty for violation

® Generate plan over discrete action space guaranteeing
least-violation of rules

+ Essentially least-violating state-space search

e THE UNIVERSITY
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Motion Planner: Combinatorial Planners

+ Correct by construction planners:
® Example rules:
+ Do not collide with traffic
+ Never head in wrong direction
+ Do not drive on sidewalk
+Go to the goal

e THE UNIVERSITY
II I of NORTH CAROLINA
1

at CHAPEL HILL
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Motion Planner: Combinatorial Planners

+ Correct by construction planners:

4+ Green: Goal
4+ Red: Obstacle
4+ Lavendar: Sidewalk

Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., & Rus, D.
(2013). Least-violating control strategy synthesis with safety
rules. Proceedings of the 16th International Conference on
Hybrid Systems: Computation and Control, 1-10.
http://doi.org/10.1145/2461328.2461330

e THE UNIVERSITY
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Maneuver Planner: Sample-based Planners

+ Pendleton: popular for their guarantees of probabilistic completeness, that is
to say that given sufficient time to check an infinite number of samples, the
probability that a solution will be found if it exists converges to one.

+ General approaches:
® PRM: Probabilistic Roadmaps
® RRT: Rapidly-Exploring Random Tree
® FMT: Fast-Marching Trees
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Maneuver Planner: Sample-based Planners

+ Sample-based Planning specifically for cars:
® Dynamics computation
® Inevitable collision states
O “Space-time planning approaches™

+ Pendleton: “Incorporating differential constraints into state-sampling
planners is still a challenging matter, and requires a steering function to
draw an optimal path between two given states which obeys control
constraints (if such a path exists), as well as efficient querying methods to
tell whether a sampled state is reachable from a potential parent state"
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Maneuver Planner: Sample-based Planners

+ RRT:

® Given at-least one initial configuration in free-space and a goal
configuration

+Sample a point p in configuration space, determine if it is collision
free

+1f so, find nearest node n to the point, move some é towards the point
+I1f nton + 6 1s CLEAR, connect to the tree

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

+ RRT

>& > S

s,) =100
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Maneuver Planner: Sample-based Planners

+ RRT:

10
10
10

—

m

nttps://www.youtu

he.com/watc

N?v=rPqZyqlsZ-Q

nttps://www.youtu

he.com/watc

n?v=mEAr2FBUJEI

nttps://www.youtu

he.com/watc

N?v=p3p0EWT5Ipw

THE UNIVERSITY

of NORTH CAROLINA

at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

+ PRM: Incorporating dynamics: Sampling directly from admissible controls
+ [Hsu et al]

® Extends existing PRM framework

O State x time space formulation

O state typically encodes both the configuration and the velocity of the
robot

Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic
Motion Planning with Moving Obstacles. The International Journal of Robotics
Research, 21(3), 233-255. http://doi.org/10.1177/027836402320556421

e THE UNIVERSITY
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Maneuver Planner: Sample-based Planners

+ Incorporating dynamics: Sampling directly from admissible controls
+ [Hsu et al]
® Represents kinodynamic constraints by a control system

® set of differential equations describing all possible local motions of a
robot

+ Define set of piecewise constant control functions for finite time horizons

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

Algorithm 1 Control-driven randomized expansion.

1. Insert iy, into 772 < 1.

2.  repeat

3. Pick a milestone . from T with probability 7, ().

4. Pick a control function u from I{; uniformly at random.
5. m' +— PROPAGATE (112, u) .

6. if ' #£ nil then

7. Addm' to T, i+ i+ 1.

3. Create an edge e from m to ' store u with e.

9. if '’ & ENDGAME then exit with SUCCESS.

10. if i = NV then exit with FAILURE.

of NORTH CAROLINA
at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

4+ Check if mis in a ball of small radius
centered at the goal.

® Limitation: relative volume of the ball -> t/
0 as the dimensionality increases.

+ Check whether a canonical control 57/ planning
function generates a collision-free timé going backward
trajectory from m to (s, t,)

+ Build a secondary tree T of milestones
from the goal with motion constraints
equation backwards in time.

+ Endgame region is the union of the
neighborhood of milestones in T’

e THE UNIVERSITY
II II of NORTH CAROLINA
i at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

+ State-lattice planners

® Generate set of potential future states through solving boundary-value
problem

® Generate connected “lattice” of potential future states expanding in time
and space

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for
fast trajectory planning in dynamic on-road driving scenarios.

+ Sta‘te-la‘ttlce planners 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2009, 1879-1884.
® Ex: Configurations in space

http://doi.org/10.1109/IR0OS.2009.5354448
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lattice planners

Maneuver Planner: Sample-based Planners
® 1D Example 1n “l,” obstacle in red

+ State-
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Maneuver Planner: Sample-based Planners

+ State-lattice planners

® Transform road representation to
longitudinal and lateral segments

® Generate potential paths in parametrized

space
® Best path chosen by cost metric
+T|me’ Comfort, |ength fig. 5: State lraulsiliml.\'.(m l.hc lmnsl?u‘rmcd grid. The succes-

sors of onc vertex are shown in black,

e THE UNIVERSITY
II I of NORTH CAROLINA
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Maneuver Planner: Sample-based Planners

+ State-lattice planners
O https.//www.youtube.com/watch?v=15hL8vSo06DI

® Notice the discrete maneuver points

N THE UNIVERSITY
II I of NORTH CAROLINA
1
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Maneuver Planner: Sample-based Planners

Martinez-Gomez, L., & Fraichard, T. (2009). Collision avoidance in dynamic
environments: An ICS-based solution and its comparative evaluation.

+ 1CS-Avoidance 100-105. htp:idotorgH10 L10GIROBOT 20008152536
® Theoretically define “inevitable collision states™
+ Set of collision-avoiding controls is null

O Iterative check each candidate control s.t. subsequent
controls are not ICS

O Effective but very costly

ICS(B) = {s € S|Va € U, 3, A(a(s, t)) N B(t) # 0}

e THE UNIVERSITY
II I of NORTH CAROLINA
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at CHAPEL HILL
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Maneuver Planner: Sample-based Planners

+ ICS-Avoidance
® Area inside red region = Py
represents inevitable d(ﬂ)é[
collisions *‘
® Different movements of B 1 A I A IA
dramatically change T_.;.; | T_ T_

ICO(B,¢) . A N v

Fig. 10. ICO(B,¢) for ¢ such that £ = 0 (A is moving straight). a = 0
(left), a i1s changing (middle and right).

N THE UNIVERSITY
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Maneuver Planner: Sample-based Planners

4+ ICS-Avoidance

® Area Inside red region
represents inevitable
collisions

® Different movements of B
dramatically change
ICO(B, ¢)

Fig. 11. ICO(B,¢) for ¢ such that £ # 0 (A is turning with a constant
steering angle). a = 0 (left), a 1s changing (middle and right).

e THE UNIVERSITY
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Maneuver Planner: Obstacle Representation

+ Depending on our planning approach, we have options on how we want to
represent obstacles

+ Obstacle-avoidance approaches
O Space-time conics
® RVOS
® Critical-space planning

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Maneuver Planner: Obstacle Representation

+ Space-time conics

® Choice In obstacle representation over time

A

Y

Static Deterministic Bounded Bounded
Y Obstacle Path Velocity Acceleration

Figure 4. Obstacles as space-time volumes in R2 x Time space [235]. Time is shown in vertical axis.

When accounting for uncertainty, obstacle size grows with respect to time.
THE
of NORTH CAROLINA
at CHAPEL HILL
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Maneuver Planner: Obstacle Representation

+ RVOs: Reciprocal-velocity Obstacles P

® Prohibit velocity choices leadingto 5
collision within a time horizon
assuming reciprocity

® Originally proposed for discs

FI _ .__.'- -..- III
http://gamma.cs.unc.edu/ORCA/ . 1 i
-'Ji [l Vi
(a) (b)

e THE UNIVERSITY
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Maneuver Planner: Obstacle Representation

+ RVOs: Reciprocal-velocity Obstacles

® Constructs mutually exclusive
velocity set choices for multiple
robots

O https://youtu.be/1IFn3Mz6f5xA?t=1n
24s

e THE UNIVERSITY
II I of NORTH CAROLINA
1
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https://youtu.be/1Fn3Mz6f5xA?t=1m24s

Maneuver Planner: Obstacle Representation

+ AVOs: Acceleration-Velocity Obstacles
® Extends RVO concept to acceleration

bounded shapes C s

D

O https://youtu.be/BeNIPfWRLIY ?t=2
3s

N THE UNIVERSITY
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Maneuver Planner: Obstacle Representation

4+ Control-Obstacles:

® Plan avoidance directly in control
space for arbitrary dynamics robots

O https://youtu.be/X5nsubTAaWQg?t=19s

N THE UNIVERSITY
II I of NORTH CAROLINA
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Maneuver Planner: Obstacle Representation

+ Critical-zone planning:

O Determine “Critical zones” which
trigger automatic stopping

® Allows specific behavior encoding at
Intersections and stop signs

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S.,
... Thrun, S. (2009). Junior: The stanford entry in the urban challenge.
Springer Tracts in Advanced Robotics, 56(October 2005), 91-123.
http://doi.org/10.1007/978-3-642-03991-1 3

e THE UNIVERSITY
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Motion Planner

+ Generally two stages:

® Path planner - Computes the geometric representation of the path to be
followed. l.e. the curve, spline, track, line, etc. we are following

® Trajectory Planner / Path tracker - Computes the specific physical targets
for following the path. l.e. velocity, acceleration, heading, steering, etc.

110



Maneuver Planner: Trajectory planning

+ Given a determined path, we must compute local inputs to track the path
+ Control theory, feedback applied over error in system
+ Several approaches

® Pure-pursuit tracker

® Stanley Method

e THE UNIVERSITY
II I of NORTH CAROLINA
[ |

at CHAPEL HILL
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Structure

+ Recap

+ Kinematics & Dynamics Models
+ Planning

+ AutonoVI-Sim

e N THE UNIVERSITY
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Structure

+ Recap

+ Kinematics & Dynamics Models
+ Planning

+ AutonoVI-Sim
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AutonoVi-Sim:
Modular Autonomous Vehicle Simulation Platform Supporting
Diverse Vehicle Models, Sensor Configuration, and Traffic
Conditions

Andrew Best, Sahil Narang, Lucas Pasqualin, Daniel Barber, Dinesh Manocha
University of North Carolina at Chapel Hill
UCF Institute for Simulation and Training

http://gamma.cs.unc.edu/AutonoVi/
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http://gamma.cs.unc.edu/AutonoVi/

Motivation

1.2 billion vehicles on the roads today
84 million new vehicles in 2015
China: 24 m U.S.: 2.7m
India: 3.7 m S.E Asia: 3.8m

Many markets expected to grow exponentially through 2030

New Delhi

115



Motivation

Majority of new vehicles in developing markets (30+ million)
Limited infrastructure, loose traffic conventions

Average vehicle life: 10+ years (17 years in U.S)
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Motivation

Long before autonomy will reach this:

’ P .
We developeTV.S"r: newintersection
Eiil

AT AER ol

Au et al. 2012 Kabbaj, TED 2016
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Motivation

It will deal with situations like these:
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Motivation

It will deal with situations like these:
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Motivation

- It will deal with situations like these:
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Challenges

Safety guarantees are critical
Drivers, pedestrians, cyclists difficult to predict
Road and environment conditions are dynamic

Laws and norms differ by culture

Huge number of scenarios

121



Challenges

Development and testing of autonomous driving
algorithms

On-road experiments may be hazardous
Closed-course experiments may limit transfer

High costs in terms of time and money

Solution: develop and test robust algorithms in
simulation

Test novel driving strategies & sensor
configurations

Reduces costs
Allows testing dangerous scenarios

Vary traffic and weather conditions

Simulated city

122



Contributions

AutonoVi-Sim : high fidelity simulation platform for testing autonomous
driving algorithms

Varying vehicle types, traffic condition
Rapid Scenario Construction
Simulates cyclists and pedestrians
Modular Sensor configuration, fusion

Facilitates testing novel driving strategies
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Contributions

AutonoVi: novel algorithm for autonomous vehicle navigation
Collision-free, dynamically feasible maneuvers
Navigate amongst pedestrians, cyclists, other vehicles
Perform dynamic lane-changes for avoidance and overtaking

Generalizes to different vehicles through data-driven dynamics
approach

Adhere to traffic laws and norms
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Overview

Motivation

Related Work

Contributions:
Simulation Platform: Autonovi-Sim
Navigation Algorithm: Autonovi

Results
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Related work:

Traffic Simulation

MATSIim [Horni 2016], SUMO [krajzewicz 2002]
Autonomous Vehicle Simulation
OpenAl Universe, Udacity

Waymo Carcraft, Righthook.io

Simulation integral to development of many

controllers & recent approaches [Katrakazas2015].

MATSIm

SUMO
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Related work:

Collision-free navigation
Occupancy grids[Kolski 2006], driving corridors [Hardy 2013]

Velocity Obstacles [Berg 2011], Control obstacles [Bareiss 2015],

polygonal decomposition [Ziegler 2014], random exploration
[Katrakazas 2015]

Lateral control approaches [Fritz 2004, Sadigh 2016]

Generating traffic behaviors

Human driver model [Treiber 2006], data-driven [Hidas 2005],

correct by construction [Tumova 2013], Bayesian prediction
[Galceran 2015]
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Related work:

Modelling Kinematics and Dynamics

kinematic models [Reeds 1990, LaValle 20086,
Margolis 1991]

Dynamics models [Borrelli 2005]

Simulation for Vision Training

Grand Theft Auto 5 [Richter 2016, Johnson-Roberson
2017]
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Overview

Motivation

Related Work

Contributions:
Simulation Platform: Autonovi-Sim
Navigation Algorithm: Autonovi

Results
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Autonovi-Sim

Modular simulation framework for generating dynamic traffic conditions,
weather, driver profiles, and road networks

Facilitates novel driving strategy development

Environment Non-vehicle
(Time of Day) Traffic
Weather Effects) (Pedestrians)
¥ Tucliats Vehicles
Analysis
Roads (Agent Data) [~ N (Control)
(Sensor Data) J_ (Perception)
(Occupancy) ‘
A Infrastructure Drivers '[
Road Network (Stop Lights) (Culture)
(Loop Detectors) (Personality) (Avoidance) J-
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Autonovi-Sim: Roads & Road Network

Roads constructed by click and drag Roads
- (Hazards)
Road network constructed automatically (Occupancy)
e

Road layouts
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Autonovi-Sim: Roads & Road Network

N
Construct large road networks with minimal effort Road Network

Provides routing and traffic information to vehicles

Allows dynamic lane closures, sign obstructions

QT
A

‘1IIII|IIXI;?H -

|

Urban Environment for pedestrian 4 kilometer highway on and off loop

& cyclist testing
132



Autonovi-Sim: Infrastructure

Infrastructure placed as roads or overlays Infrastructure
Provide cycle information to vehicles, can be (Coop Detectors)

queried and centrally controlled

T \‘

| ': T \

4 way, two lane

i

3 way, two lane 133



Autonovi-Sim: Environment

Goal: Testing driving strategies & sensor configuration Environment

in adverse conditions (Time of Day)
Weather E_ffects)

Simulate changing environmental conditions
Rain, fog, time of day

Modelling associated physical changes

Fog reduces visibility Heavy rain reduces traction
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Autonovi-Sim: Non-vehicle Traffic

Cyclists Non-vehicle
Traffic
operate on road network (Pedestrians)
Travel as vehicles, custom destinations and
routing =

Pedestrians
Operate on roads or sidewalks
Programmable to follow or ignore traffic rules

Integrate prediction and personality parameters

Pedestrian Motion Cyclist Motion 135



Autonovi-Sim: Vehicles

Vehicles

Various vehicle profiles:
Size, shape, color

Speed / engine profile

Turning / braking

Manage sensor information

Laser Range-finder Multiple Vehicle Multi-camera detector
Configurations

136



Autonovi-Sim: Vehicles

Vehicles

Sensors placed interactively on vehicle

Configurable perception and detection algorithms

" > B No debug object selected v
assDefaults  Simulation  Play

Debug Filter

EES G NN O O D
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Autonovi-Sim: Drivers

Control driving decisions Drivers

(Personality) (Avoidance)
Determine new controls (steering, throttle) 7,

Fuse sensor information

Configurable parameters representing
personality

Following distance, attention time, speeding,
etc.

Configure proportions of driver types

l.e. 50% aggressive, 50% cautious
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Autonovi-Sim: Drivers

3 Drivers in AutonoVi-Sim Drivers

(Navigation)

(Personality) (Avoidance)

Manual

Basic Follower
AutonoVi

N

Manual Drive Basic Follower
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Autonovi-Sim: Results

Simulating large, dense road networks

Generating data for analysis, vision classification, autonomous driving
algorithms

,_"

- I

N

sy

i » \
i i o
dl e = l |
I s
Y -

-.

—

50 vehicles navigating (3x)
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Autonovi-Sim: Results

600+ vehicles on 3.5 km
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Autonovi
Computes collision free, dynamically feasible maneuvers amongst
pedestrians, cyclists, and vehicles
4 stage algorithm
Routing / GPS
Guiding Path Computation

Collision-avoidance / Dynamics Constraints

Optimization-based Maneuvering

GPS Routing | Guiding Path Optimization-based
Maneuvering



Autonovi: Routing / GPS
Generates maneuvers between vehicle position
and destination
Nodes represent road transitions

Allows vehicle to change lanes between
maneuvers

Autonovi: Guiding Path

Computes “ideal” path vehicle should follow
Respects traffic rules
Path computed and represented as arc

Generates target controls

Guiding Path
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Autonovi: Collision Avoidance / Dynamics

Control Obstacles [Bareiss 2015]

“Union of all controls that could lead to collisions with the
neighbor within the time horizon, 1°

Plan directly in control space (throttle, steering)
Construct “obstacles” for nearby entities
Key principles / Assumptions
Reciprocity in avoidance (all agents take equal share)
Bounding discs around each entity
Controls / decisions of other entities are observable
New controls chosen as minimal deviation from target s. t. the
following is not violated:
V(ii#i,0<t<7) (O & {q,(g(t, X, u; + Auy)) )N
(O; & {q;(g(t. x;,u; + Awy)) }) =0
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Autonovi: Collision Avoidance / Dynamics

Goal: Augment control obstacles with dynamics constraints
Generate dynamics profile for vehicles through profiling
repeated simulation for each vehicle testing control inputs

Represent underlying dynamics without
specific model

Gather data to generate approximation
functions for non-linear vehicle dynamics

S(M) : target controls are safe given
current vehicle state

A(M) : Expected acceleration given

effort and current state Dynamics Profile Generation

@ () : Expected steering change given
effort and current state
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Autonovi: Collision Avoidance / Dynamics

Augmented Control Obstacles
Reciprocity is not assumed from others
Use tightly fitting bounding polygons

Do not assume controls of others are
observable

.. . o
New controls chosen from optimization stage (Vss")

Throttle

Steering
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Autonovi: Collision Avoidance / Dynamics

Augmented Control Obstacles
Reciprocity is not assumed from others
Use tightly fitting bounding polygons

Do not assume controls of others are
observable

rv%

Steering

a

New controls chosen from optimization stage

Throttle (_‘

Obstacles constructed from avoidance
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Autonovi: Collision Avoidance / Dynamics

Augmented Control Obstacles
Reciprocity is not assumed from others
Use tightly fitting bounding polygons

Do not assume controls of others are

observable k J

New controls chosen from optimization stage Vs

Throttle

Obstacles constructed from avoidance

Steering
Obstacles constructed from dynamics
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Autonovi: Collision Avoidance / Dynamics

Augmented Control Obstacles
Reciprocity is not assumed from others
Use tightly fitting bounding polygons

Do not assume controls of others are
observable

New controls chosen from optimization stage

Obstacles constructed from avoidance

Steering

Obstacles constructed from dynamics

New velocity chosen by cost-optimization
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Autonovi: Collision Avoidance / Dynamics

Advantages of augmented control obstacles:
Free-space is guaranteed feasible and safe

Conservative linear constraints from surface
of obstacles

Disadvantages:
Closed-form of surface may not exist
Space may be non-convex

Computationally expensive

Steering "
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Autonovi: Collision Avoidance / Dynamics

Sampling approach

Construct candidate controls via sampling near target controls
Evaluate collision-avoidance and dynamics constraints

Forward integrate safe controls to generate candidate trajectories

Choose “optimal” control set in optimization stage
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Autonovi: Optimization-Based Maneuvering

Choose “optimal” controls through multi-objective cost function
Path (velocity, drift, progress)

Comfort (acceleration, yaw)

Maneuver (lane change, node distance)

Proximity (cyclists, vehicle, pedestrians)

I
C = Zc’path(i) + Ccmft(?:) + Cmnor (?’) + Cprox (?')
1=0
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Autonovi: Optimization-Based Maneuvering

Choose “optimal” controls through multi-objective cost function
Path (velocity, drift, progress)
Comfort (acceleration, yaw)
Maneuver (lane change, node distance)
Static cost for lane changes

Cost inverse to distance if vehicle occupies incorrect lane as
maneuver approaches

Proximity (cyclists, vehicle, pedestrians)

I
C — Zc’path(i) + Ccmft(?:) + Cmnur (?’) + Cproﬂz (?')
1=0
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Autonovi: Optimization-Based Maneuvering

Choose “optimal” controls through multi-objective cost function
Path (velocity, drift, progress)
Comfort (acceleration, yaw)
Maneuver (lane change, node distance)
Proximity (cyclists, vehicle, pedestrians)
Configurable cost per entity type

Generates safe passing buffers

I
C — Zc’path(i) + Ccmft(?:) + Cmnur (?’) + Cproﬂz (?')
1=0
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Results: Sudden Hazards @ 20 mph

Vehicle responds quickly to sudden hazards

Braking and swerving to avoid collisions

111 43 39

55.123
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Results: Sudden Hazards @ 60 mph

Vehicle responds quickly to sudden hazards

Respects unique dynamics of each car
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Results: Jaywalking Pedestrian

Vehicle accounts for pedestrians and comes to a stop
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Results: Jaywalking Pedestrian

Vehicle accounts for pedestrians and comes to a stop

Respects unique dynamics of each car

b=
=
=
=
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Results: Passing Cyclists

Vehicle changes lanes to safely pass cyclist
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Results: Passing Cyclists

Vehicle changes lanes to safely pass cyclist

Lane change only when possible

111 43 39

L e G
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Results: Next Steps

Generating data for deep-learning

Growing consensus that synthetic data is necessary for AV training
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Results: Next Steps

Using real-world training data, behaviors can be optimized to improve realism
Ex: Drivers behave more like human drivers

Ex: Infrastructure tuned to specific real patterns

Vehicle sensors can be similarly calibrated
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Maneuver Planner: Project ideas

+

Improving tracking using a deep learnt pedestrian detection framework

Biometric Walk: Learning and classifying pedestrian trajectories/behavior to a specific person to improve person
identification

Autonomous intelligent navigation of robots in a crowd (Pepper)
Anomaly Detection using machine learning on a synthetic dataset

Designing models for robots to be more socially-tolerant. Improve the personal space from SocioSense to more
than just a fixed circle - a probabilistic comfort zone.

+

+ + +
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Maneuver Planner: Project ideas

Sampling-based planner / Parameter optimization

Trajectory Analysis / simulation data logging and analysis

Perception models for detection (pedestrian detection from simulation)
Modelling sensors (virtual lidar etc)

Driver behavior learning and classification

Implementing alternate planners (elastic band / rrt / state lattice / etc)
Cyclist and Pedestrian planning expansion in AutonoVi-Sim
Modelling better fidelity weather and its impact on sensor information

+ 4+ 4+ +++++
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Maneuver Planner: Related reading

+ Katarakazas: Real-time motion planning methods for autonomous on-road
driving: State-of-the-art and future research directions

+ Pendleton et al.: Perception, Planning, Control, and Coordination for
Autonomous Vehicles

+ Lefevre et al. : A survey on motion prediction and risk assessment for
Intelligent vehicles

+ Saifuzzaman et al: Incorporating human-factors in car-following models: a
review of recent developments and research needs

+ Bast et al.: Route planning in transportation networks
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Questions
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