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 Homework due:

 11:59 PM October 4th (tomorrow)

 Project Proposals:

 Next week

 should make a WWW page of your project topic, 4 parts:

 1. What is the goal of your project? What is your motivation?

 2. What is the prior state of the art? Please include pointers to related work or WWW sites related to the prior work?

 3. What do you plan to accomplish over the semester?

 4. What is your timeline between Oct. 10 - Dec. 8? Remember the final project presentation would be after Dec. 8 

deadline. I want you to come up with 2 week milestones (between Oct. 10 - Dec. 8) and put them on the WWW page? 

That way I want to make sure that you have thought in detail about the todo list for the project.

 15-20 minute presentation slot on Oct. 10
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Administrative



Motion Planning: term used in robotics for the process of breaking down a 

desired movement task into discrete motions that satisfy movement 

constraints and possibly optimize some aspect of the movement
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Main Idea



Motion Planning

Fuse prior information, sensing, mapping, etc. to generate:

Set of actions leading from some initial state to a goal

OR continuous action function from initial state to goal

Motion planning for navigation is:

Hierarchical

Recurrent
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Main Idea



Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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University of North Carolina at Chapel Hill

Autonomous vehicle: a motor vehicle that uses artificial intelligence, 

sensors and global positioning system coordinates to drive itself without the 

active intervention of a human operator

Focus of enormous investment [$1b+ in 2015]
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Tesla

Waymo

Nutonomy

Autonomous Driving



Autonomous Driving: Levels of Autonomy

 0: Standard Car

 1:  Assist in some part of driving

 Cruise control

 2: Perform some part of driving

 Adaptive CC + lane keeping

 3: Self-driving under ideal conditions

 Human must remain fully aware

 4: Self-driving under near-ideal conditions

 Human need not remain constantly aware

 5: Outperforms human in all circumstances
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Autonomous Driving

Urban driving is particularly challenging 
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Autonomous Driving: Main Components
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Autonomous Driving: Main Components

10

Perception

Collect information and extract relevant knowledge from the 

environment.



Autonomous Driving: Main Components
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Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals



Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Perception using LIDAR

Light Detection and Ranging

 Illuminate target using pulsed laser lights, and measure reflected pulses 

using a sensor
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Autonomous Driving: Perception using LIDAR

LIDAR in practice

Velodyne 64HD lidar

https://www.youtube.com/watch?v=nXlqv_k4P8Q
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https://www.youtube.com/watch?v=nXlqv_k4P8Q


Autonomous Driving: Perception using Cameras

Camera based vision

Road detection

Lane marking detection

Road surface detection

On-road object detection
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Autonomous Driving: Perception using Cameras

Sensing Challenges

Sensor Uncertainty

Sensor Configuration

Weather / Environment
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Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Vehicle Localization

Determining the pose of the ego vehicle and measuring its own motion

Fusing data

Satellite-based navigation system

 Inertial navigation system

Map aided localization

SLAM
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Structure

Recap

 Perception

 Localization

 Planning

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Planning

Compare to Pedestrian Techniques:

Route Planning: road selection (global)

Path Planning: preferred lanes (global)

Maneuver-search: high level maneuvers 

(local)

Trajectory planning: Lowest level of 

planning (local)
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Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim
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Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

Recall Pedestrian Planning:

Roadmap is essential a graph 

of potential agent states
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Autonomous Driving: State Space

Examples:

3D space with velocity

(px, py, pz, θx, θy, θz, vx, vy, vz, ωx,ωy,ωz)

( Ԧ𝑝, Ԧ𝜃, Ԧ𝑣, 𝜔)

2D space with acceleration

(𝑝𝑥 , 𝑝𝑦 , 𝜃, 𝑣𝑥, 𝑣𝑦, 𝜔, 𝑎𝑥 , 𝑎𝑦 , 𝛼)

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, Ԧ𝑎, 𝛼
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Autonomous Driving: State Space

Examples:

2D space with blinker booleans

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, 𝑏𝑙𝑙 , 𝑏𝑙𝑟
State contains everything we need to describe the 

robot’s current configuration!

Neglect some state variables when planning
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Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim
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Autonomous Driving: Holonomicity

“Holonomic” robots

Robots whose motion capability is independent of 

their orientation

Controllable DOF == total DOF

Examples:

Quad-rotors

Omni-drive base

https://youtu.be/9ZCUxXajzXs
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https://youtu.be/9ZCUxXajzXs


Autonomous Driving: Holonomicity

Cars are “non-holonomic” robots

Typically 5 values describing physical

(2 Cartesian coordinates, orientation, linear 

speed, angular speed)

2 “kinematic” constraints

Can only move forward or backward, tangent 

to body direction

Can only steer in bounded radius

29



Kinematic Constraints

Kinematics of Motion

“the branch of mechanics that deals with pure motion, 

without reference to the masses or forces involved in it”

Equations describing conversion between control and 

motion

Control: inputs to the system

In vehicle: steering and throttle

Also referred to as “Action” in literature
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Autonomous Driving: Holonomicity

kinematic and dynamic constraints can be considered 

“rules” governing the state evolution function

For state 𝑠𝑡 ∈ 𝑆, control input 𝑢𝑡 ∈ U, time 𝑡 ∈ 𝑇:

F(st, u𝑡 , Δ𝑡) → st+1
Ex:

 A car cannot turn in place. No amount of steering 

will accomplish this

A Roomba can turn in place
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Kinematic Constraints

Kinematic models of a car

Single-track Bicycle (or simple car model)

3-DOF configuration: (x,y,θ)

2-DOF control: steering (φ), speed (v)

Full state: (x,y,θ,v, φ,L)

Equations of motion:

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
𝑣

𝐿
∗ tan 𝜙
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Kinematic Constraints

Kinematic models of a car

Single-track Bicycle example

https://www.youtube.com/watch?v=TyW1BPpHy

18

Kinematic robot simulator provided as part of 

HW3
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https://www.youtube.com/watch?v=TyW1BPpHy18


Kinematic Constraints

Kinematic models of a car

Extended Car  w. linear integrators

6-DOF configuration (x,y,θ, φ,v,𝜔)

2-DOF Control:

steering rate (𝑢𝑠), acceleration (𝑢𝑣)

Full state (𝑥, 𝑦, 𝜃, 𝑣, 𝜙, 𝜔, 𝑢𝑠, 𝑢𝑣, L)
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Kinematic Constraints

Extended Car  w. linear integrators

Equations of motion

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
tan(𝜙)

𝐿
ሶ𝜙 = 𝜔 ሶ𝜔 = 𝜇𝑠

ሶ𝑣 = 𝑢𝑣
Steering is continuous C1

Velocity continuous

Control is more complex 
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Kinematic Constraints

Example: Stopping the car

Simple-car: 𝑢𝑣 = 0

LI-car 𝑢𝑣 = −𝑣 iff max 𝑈𝑣 ≥ 𝑣 𝑒𝑙𝑠𝑒max 𝑈𝑣
Car will not necessarily stop right away

Error increases as we increase the number of 

integrators
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Kinematic Constraints

Kinematic models of a car

Extended Car  w. linear integrators

https://www.youtube.com/watch?v=3Q31mA5Aj-

c
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https://www.youtube.com/watch?v=3Q31mA5Aj-c


Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim
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Dynamic Constraints

“the branch of mechanics concerned with the motion 

of bodies under the action of forces.”

Tires subject to lateral and longitudinal force during 

steering / accelerating

 If lateral force exceeds friction force

Fishtailing

 If longitudinal force exceeds friction force

Peel out / skid
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Dynamic Constraints

No longer directly control acceleration and steering

Apply engine force

Apply steering force

Diminishing returns on each force at limits of control
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Dynamic Constraints

Dynamic Bicycle model with linear tires

No load transfer between tires

Larger state space including tire stiffness
 𝐹𝑥 longitudinal force

 𝐹𝑦 lateral force

 m mass

 𝐼𝑧 yaw moment of intertia
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Dynamic Constraints

Dynamic Bicycle model with linear tires

𝐹𝑦 lateral force on tire

𝐹𝑥 longitudinal force on tire

𝛼𝑓 “slip angle” of tire

𝛿 steering angle
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Dynamic Constraints

Dynamic constraints

Correcting for slip

https://www.youtube.com/watch?v=itggGQu_ECc
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https://www.youtube.com/watch?v=itggGQu_ECc


Dynamic Constraints

Models increase in complexity as needed for 

performance tuning

Aerodynamic drag force

Maximum engine torque

Each layer of dynamics:

 Increases accuracy of model

 Increases computational complexity
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Dynamic Constraints

Dynamic constraints

Adjusting for drag & lateral forces

https://youtu.be/tesD4F-HOxs?t=1m24s
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https://youtu.be/tesD4F-HOxs?t=1m24s


Dynamic Constraints

Extended vehicle with load transfer
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Structure

Recap

 State, Kinematics, and Dynamics Models

 Planning

Mission Planner

 Behavior Planner

Maneuver Planner / Motion Planner

AutonoVi-Sim
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Autonomous Driving: Main Components

48

Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals



Structure

Recap

 State, Kinematics, and Dynamics Models

 Planning

Mission Planner

 Behavior Planner

Maneuver Planner / Motion Planner

AutonoVi-Sim
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Mission Planner (Route Planning)

 Determine the appropriate macro-level route to take

 Typically road level i.e. which roads to take

 Katrakazas: “Route planning is concerned with finding the best global route from a 

given origin to a destination, supplemented occasionally with real-time traffic 

information”
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Mission Planner (Route Planning)

 Pendleton: “considers high level objectives, such as assignment of pickup/dropoff

tasks and which roads should be taken to achieve the task”

 Typical approaches:

 RNG (Road-network Graph)

A*

Dijkstras

 Scale poorly!
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Mission Planner (Route Planning)

Massive-scale algorithms needed

for routing

 18 million vertices, 42.5 million edges

 Partial Western Europe dataset
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Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., 

Sanders, P., … Werneck, R. F. (2015). Route Planning in Transportation 

Networks. Microsoft Research Technical Report, 1–65. 



Mission Planner

 High Performance Multi-Level (Delling et al.)

 Hierarchical decomposition of input graph

 Compute large set of partial graphs

 Optimize subgraphs

Remove “unused” edges

Reorder graph to prioritize shortest paths
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Mission Planner

 HPML (Delling et al.)

 Optimize subgraphs

Remove “unused” edges

Reorder graph to prioritize 

shortest paths

 Queries ~40𝜇𝑠 on 18 million 

vertices
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Delling, D., Holzer, M., Kirill, M., Schulz, F., & Wagner, D. 

(2008). High-Performance Multi-Level Routing, 2, 1–19.



Mission Planner

 HPML (Delling et al.)
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Structure

Recap

 State, Kinematics, and Dynamics Models

 Planning

Mission Planner

 Behavior Planner

Maneuver Planner / Motion Planner

AutonoVi-Sim
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Behavior Planner

 “makes ad hoc decisions to properly interact with other agents and follow rules 

restrictions, and thereby generates local objectives, e.g., change lanes, overtake, or 

proceed through an intersection”

 Finite State Machines

 Finite time maneuvers
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Behavior Planner

 Finite State Machines

Set of “states” and transition functions 

between them

Separate from configuration state
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Behavior Planner
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Example from crowd sim

AI Technique

Defines a set of States and Transition functions between them

Allows us to represent complex behaviors with simple components

Start

Find 

Luggage

Wait 

For 

Help

Get 

Luggage

50%

50%

Attendant

Arrives

Luggage Reached

Exit 

Plane

Luggage Obtained

No Luggage



Behavior Planner

 FSMs limited in some cases

 What to do in unseen situations?

 Real-time decision making [Furda et al 2011]
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Furda, A., & Vlacic, L. (2011). Enabling safe autonomous driving in real-world city 

traffic using Multiple Criteria decision making. IEEE Intelligent Transportation 

Systems Magazine, 3(1), 4–17. http://doi.org/10.1109/MITS.2011.940472



Behavior Planner

 Limited discrete maneuver curve example

 https://youtu.be/5ATo6hheV9U
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Structure

Recap

 State, Kinematics, and Dynamics Models

 Planning

Mission Planner

 Behavior Planner

Maneuver Planner / Motion Planner

AutonoVi-Sim
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Maneuver Planner / Motion Planner

 Pendleton: generates appropriate paths and/or sets of actions to achieve local 

objectives, with the most typical objective being to reach a goal region while avoiding 

obstacle collision 
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Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.
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Motion Planner

 Pendleton: generates appropriate paths and/or sets of actions to achieve local 

objectives, with the most typical objective being to reach a goal region while avoiding 

obstacle collision 
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Motion Planner

 How do we evaluate them?

 Complexity (computation cost)

 limits how frequently we can replan

NEVER get it perfectly right, so we focus on replanning as fast as possible

 Completeness (likelihood that a solution will be found if one exists)

The piano-movers problem is PSPACE-HARD

must guarantee safety

i.e. must be sure we can deal with error and recover
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Motion Planner

 Piano mover’s problem

 https://youtu.be/cXm3WW-geD8
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning
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Motion Planner

 Basic overview

 Complete planning - continuous plan in configuration space

Exponential in dimensions of c-space (curse of dimensionality)

"Complete"

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

 Sample-Based planning:
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

Exponential in dimensions of c-space discretization (curse of dimensionality)

"resolution complete"

 Sample-Based planning
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning - Sample in space to find controls / positions which are 

collision free and linked

Probabilistically complete

Some “probabilistically optimal”

NOT exponential in configuration space
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Motion Planner: Combinatorial Planners

General Approaches:

convex obstacle spaces

NP-Hard

visibility graph (shortest path)

voronoi diagram (highest clearance)

obstacle-cells using boundaries 

and borders

72

Deits, R., & Tedrake, R. (2015). Computing large convex regions of obstacle-

free space through semidefinite programming. Springer Tracts in Advanced 

Robotics, 107, 109–124. http://doi.org/10.1007/978-3-319-16595-0_7



Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints

73

Deits, R., & Tedrake, R. (2015). Computing large convex 

regions of obstacle-free space through semidefinite 

programming. Springer Tracts in Advanced Robotics, 107, 

109–124. http://doi.org/10.1007/978-3-319-16595-0_7

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., … 

Zeeb, E. (2014). Making bertha drive-an autonomous journey on a historic route. 

IEEE Intelligent Transportation Systems Magazine, 6(2), 8–20. 

http://doi.org/10.1109/MITS.2014.2306552



Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints
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Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle constraints
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Motion Planner: Combinatorial Planners

Driving Corridors:

https://youtu.be/GfXg9ux4xUw?t=2m5s
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Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set

Trajectory planner generates candidate trajectories 

and goals

Done by precomputation of many curves 

“best” trajectory chosen by optimization

77

Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., … 

Darms, M. (2009). Autonomous Driving in Traffic: Boss and the Urban 

Challenge. Al Magazine, 30(2), 17–28. http://doi.org/10.1002/rob



Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set
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Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set

https://www.youtube.com/watch?v=lULl63ERek0&t=89s

Other combinatorial approaches:

https://www.youtube.com/watch?v=3FNPSld6Lrg
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https://www.youtube.com/watch?v=lULl63ERek0&t=89s


Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

Generate cellular-grid representation of local space

Cells encode probability of occupancy

Moving obstacles propagate occupancy probability
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Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

Vehicle presence propagates forward

81

Broggi, A., Medici, P., Zani, P., Coati, A., & Panciroli, M. (2012). Autonomous 

vehicles control in the VisLab Intercontinental Autonomous Challenge. Annual 

Reviews in Control, 36(1), 161–171. http://doi.org/10.1016/j.arcontrol.2012.03.012



Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

https://youtu.be/CRQfhhICSj0

https://youtu.be/MzpBzrtEGrA
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https://youtu.be/CRQfhhICSj0


Motion Planner: Combinatorial Planners

Correct by construction planners:

Concept: Encode discrete rules and available actions

Rules assigned priority in Finite Linear Temporal Logic

Rules define “cost” penalty for violation

Generate plan over discrete action space guaranteeing 

least-violation of rules

Essentially least-violating state-space search
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Motion Planner: Combinatorial Planners

Correct by construction planners:

Example rules:

Do not collide with traffic

Never head in wrong direction

Do not drive on sidewalk

Go to the goal

84



Motion Planner: Combinatorial Planners

Correct by construction planners:

85

Green: Goal

Red: Obstacle

Lavendar: Sidewalk

Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., & Rus, D. 

(2013). Least-violating control strategy synthesis with safety 

rules. Proceedings of the 16th International Conference on 

Hybrid Systems: Computation and Control, 1–10. 

http://doi.org/10.1145/2461328.2461330



Maneuver Planner: Sample-based Planners

Pendleton: popular for their guarantees of probabilistic completeness, that is 

to say that given sufficient time to check an infinite number of samples, the 

probability that a solution will be found if it exists converges to one.

General approaches:

PRM: Probabilistic Roadmaps

RRT: Rapidly-Exploring Random Tree

FMT: Fast-Marching Trees
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Maneuver Planner: Sample-based Planners

Sample-based Planning specifically for cars:

Dynamics computation

 Inevitable collision states

“Space-time planning approaches”

Pendleton: “Incorporating differential constraints into state-sampling 

planners is still a challenging matter, and requires a steering function to 

draw an optimal path between two given states which obeys control 

constraints (if such a path exists), as well as efficient querying methods to 

tell whether a sampled state is reachable from a potential parent state"
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Maneuver Planner: Sample-based Planners

RRT:

Given at-least one initial configuration in free-space and a goal 

configuration

Sample a point 𝑝 in configuration space, determine if it is collision 

free

If so, find nearest node 𝑛 to the point, move some 𝛿 towards the point

If  𝑛 to 𝑛 + 𝛿 is CLEAR, connect to the tree
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Maneuver Planner: Sample-based Planners
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RRT



Maneuver Planner: Sample-based Planners

RRT:

https://www.youtube.com/watch?v=rPgZyq15Z-Q

https://www.youtube.com/watch?v=mEAr2FBUJEI

https://www.youtube.com/watch?v=p3p0EWT5lpw
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Maneuver Planner: Sample-based Planners

PRM: Incorporating dynamics: Sampling directly from admissible controls

 [Hsu et al]

Extends existing PRM framework

State × time space formulation

 state typically encodes both the configuration  and the velocity of the 

robot

91

Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic

Motion Planning with Moving Obstacles. The International Journal of Robotics 

Research, 21(3), 233–255. http://doi.org/10.1177/027836402320556421



Maneuver Planner: Sample-based Planners

 Incorporating dynamics: Sampling directly from admissible controls

 [Hsu et al]

Represents kinodynamic constraints by a control system

 set of differential equations describing all possible local motions of a 

robot

Define set of piecewise constant control functions for finite time horizons
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Maneuver Planner: Sample-based Planners
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Maneuver Planner: Sample-based Planners

 Check if m is in a ball of small radius 
centered at the goal.

 Limitation: relative volume of the ball -> 
0 as the dimensionality increases.

 Check whether a canonical control 
function generates a collision-free 
trajectory from m to (sg, tg)

 Build a secondary tree T’ of milestones 
from the goal with motion constraints 
equation backwards in time.

 Endgame region is the union of the 
neighborhood of milestones in T’



Maneuver Planner: Sample-based Planners

State-lattice planners

Generate set of potential future states through solving boundary-value 

problem

Generate connected “lattice” of potential future states expanding in time 

and space
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Maneuver Planner: Sample-based Planners

State-lattice planners

Ex: Configurations in space

96

Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for 

fast trajectory planning in dynamic on-road driving scenarios. 

2009 IEEE/RSJ International Conference on Intelligent Robots 

and Systems, IROS 2009, 1879–1884. 

http://doi.org/10.1109/IROS.2009.5354448



Maneuver Planner: Sample-based Planners

State-lattice planners

1D Example in “l,” obstacle in red
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Maneuver Planner: Sample-based Planners

State-lattice planners

Transform road representation to 

longitudinal and lateral segments

Generate potential paths in parametrized 

space

Best path chosen by cost metric

Time, comfort, length
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Maneuver Planner: Sample-based Planners

State-lattice planners

https://www.youtube.com/watch?v=I5hL8vSo6DI

Notice the discrete maneuver points
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Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Theoretically define “inevitable collision states”

Set of collision-avoiding controls is null

 Iterative check each candidate control s.t. subsequent 

controls are not ICS

Effective but very costly
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Martinez-Gomez, L., & Fraichard, T. (2009). Collision avoidance in dynamic 

environments: An ICS-based solution and its comparative evaluation. 

Proceedings - IEEE International Conference on Robotics and Automation, 

100–105. http://doi.org/10.1109/ROBOT.2009.5152536



Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Area inside red region 

represents inevitable 

collisions

Different movements of B 

dramatically change 

𝐼𝐶𝑂 𝐵,𝜙
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Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Area inside red region 

represents inevitable 

collisions

Different movements of B 

dramatically change 

𝐼𝐶𝑂 𝐵,𝜙
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Maneuver Planner: Obstacle Representation

Depending on our planning approach, we have options on how we want to 

represent obstacles

Obstacle-avoidance approaches

Space-time conics

RVOS

Critical-space planning
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Maneuver Planner: Obstacle Representation

Space-time conics

Choice in obstacle representation over time
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Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Prohibit velocity choices leading to 

collision within a time horizon 

assuming reciprocity

Originally proposed for discs
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Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Constructs mutually exclusive 

velocity set choices for multiple 

robots

https://youtu.be/1Fn3Mz6f5xA?t=1m

24s
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https://youtu.be/1Fn3Mz6f5xA?t=1m24s


Maneuver Planner: Obstacle Representation

AVOs: Acceleration-Velocity Obstacles

Extends RVO concept to acceleration 

bounded shapes

https://youtu.be/BeNIPfWRLrY?t=2

3s
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Maneuver Planner: Obstacle Representation

Control-Obstacles:

Plan avoidance directly in control 

space for arbitrary dynamics robots

https://youtu.be/X5nsubTAaWg?t=19s
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Maneuver Planner: Obstacle Representation

Critical-zone planning:

Determine “Critical zones” which 

trigger automatic stopping 

Allows specific behavior encoding at 

intersections and stop signs
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Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., 

… Thrun, S. (2009). Junior: The stanford entry in the urban challenge. 

Springer Tracts in Advanced Robotics, 56(October 2005), 91–123. 

http://doi.org/10.1007/978-3-642-03991-1_3



Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.
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Maneuver Planner: Trajectory planning

Given a determined path, we must compute local inputs to track the path

Control theory, feedback applied over error in system

Several approaches

Pure-pursuit tracker

 Stanley Method
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Structure

Recap

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Structure

Recap

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Andrew Best, Sahil Narang, Lucas Pasqualin, Daniel Barber, Dinesh Manocha

University of North Carolina at Chapel Hill

UCF Institute for Simulation and Training

http://gamma.cs.unc.edu/AutonoVi/

AutonoVi-Sim:
Modular Autonomous Vehicle Simulation Platform Supporting 

Diverse Vehicle Models, Sensor Configuration, and Traffic 

Conditions

http://gamma.cs.unc.edu/AutonoVi/


Motivation

• 1.2 billion vehicles on the roads today

• 84 million new vehicles in 2015

• China: 24 m          U.S.:   2.7m

• India:   3.7 m          S.E Asia: 3.8m

• Many markets expected to grow exponentially through 2030

115
New Delhi Bangkok



Motivation

• Majority of new vehicles in developing markets (30+ million)

• Limited infrastructure, loose traffic conventions

• Average vehicle life: 10+ years (17 years in U.S)
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Motivation

• Long before autonomy will reach this:

117

Au et al. 2012 Kabbaj, TED 2016



Motivation

• It will deal with situations like these:
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Motivation

• It will deal with situations like these:
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Motivation

• It will deal with situations like these:

120



Challenges

• Safety guarantees are critical

• Drivers, pedestrians, cyclists difficult to predict

• Road and environment conditions are dynamic

• Laws and norms differ by culture

• Huge number of scenarios
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Challenges

• Development and testing of autonomous driving 

algorithms 

• On-road experiments may be hazardous

• Closed-course experiments may limit transfer

• High costs in terms of time and money

• Solution: develop and test robust algorithms in 

simulation 

• Test novel driving strategies & sensor 

configurations 

• Reduces costs

• Allows testing dangerous scenarios

• Vary traffic and weather conditions
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Contributions

• AutonoVi-Sim : high fidelity simulation platform for testing autonomous 

driving algorithms

• Varying vehicle types, traffic condition

• Rapid Scenario Construction

• Simulates cyclists and pedestrians

• Modular Sensor configuration, fusion

• Facilitates testing novel driving strategies
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Contributions

• AutonoVi: novel algorithm for autonomous vehicle navigation

• Collision-free, dynamically feasible maneuvers

• Navigate amongst pedestrians, cyclists, other vehicles

• Perform dynamic lane-changes for avoidance and overtaking

• Generalizes to different vehicles through data-driven dynamics 

approach

• Adhere to traffic laws and norms
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Related work:

• Traffic Simulation 

• MATSim [Horni 2016], SUMO [krajzewicz 2002]

• Autonomous Vehicle Simulation

• OpenAI Universe, Udacity

• Waymo Carcraft, Righthook.io

• Simulation integral to development of many 

controllers & recent approaches [Katrakazas2015].

126

MATSim

SUMO



Related work:

• Collision-free navigation

• Occupancy grids[Kolski 2006], driving corridors [Hardy 2013]

• Velocity Obstacles [Berg 2011], Control obstacles [Bareiss 2015], 

polygonal decomposition [Ziegler 2014],  random exploration 
[Katrakazas 2015]

• Lateral control approaches [Fritz 2004, Sadigh 2016]

• Generating traffic behaviors

• Human driver model [Treiber 2006], data-driven [Hidas 2005], 

correct by construction [Tumova 2013], Bayesian prediction 
[Galceran 2015]
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Related work:

• Modelling Kinematics and Dynamics

• kinematic models [Reeds 1990, LaValle 2006, 

Margolis 1991]

• Dynamics models [Borrelli 2005]

• Simulation for Vision Training

• Grand Theft Auto 5 [Richter 2016, Johnson-Roberson 

2017] 
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Autonovi-Sim

• Modular simulation framework for generating dynamic traffic conditions, 

weather, driver profiles, and road networks

• Facilitates novel driving strategy development
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Autonovi-Sim: Roads & Road Network

• Roads constructed by click and drag

• Road network constructed automatically

131

Road layouts



• Construct large road networks with minimal effort

• Provides routing and traffic information to vehicles

• Allows dynamic lane closures, sign obstructions

Autonovi-Sim: Roads & Road Network

Urban Environment for pedestrian 

& cyclist testing
4 kilometer highway on and off loop
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• Infrastructure placed as roads or overlays

• Provide cycle information to vehicles, can be 

queried and centrally controlled

Autonovi-Sim: Infrastructure 
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3 way, one lane

3 way, two lane

4 way, two lane



Autonovi-Sim: Environment

• Goal: Testing driving strategies & sensor configuration 

in adverse conditions 

• Simulate changing environmental conditions

• Rain, fog, time of day

• Modelling associated physical changes
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Autonovi-Sim: Non-vehicle Traffic

• Cyclists 

• operate on road network

• Travel as vehicles, custom destinations and 

routing

• Pedestrians

• Operate on roads or sidewalks

• Programmable to follow or ignore traffic rules 

• Integrate prediction and personality parameters

135Pedestrian Motion Cyclist Motion



Autonovi-Sim: Vehicles

• Various vehicle profiles:

• Size, shape, color

• Speed / engine profile

• Turning / braking

• Manage sensor information

136

Multi-camera detectorLaser Range-finder Multiple Vehicle 
Configurations



Autonovi-Sim: Vehicles

• Sensors placed interactively on vehicle

• Configurable perception and detection algorithms
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Autonovi-Sim: Drivers

• Control driving decisions

• Fuse sensor information

• Determine new controls (steering, throttle)

• Configurable parameters representing 

personality

• Following distance, attention time, speeding, 

etc.

• Configure proportions of driver types

• i.e. 50% aggressive, 50% cautious
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Autonovi-Sim: Drivers

• 3 Drivers in AutonoVi-Sim

• Manual

• Basic Follower

• AutonoVi

139

Manual Drive Basic Follower AutonoVi



Autonovi-Sim: Results

• Simulating large, dense road networks

• Generating data for analysis, vision classification, autonomous driving 

algorithms

140

50 vehicles navigating (3x)



Autonovi-Sim: Results

• Interactive Simulation of hundreds of vehicles
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Autonovi-Sim: Results

• 600+ vehicles on 3.5 km
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Autonovi

• Computes collision free, dynamically feasible maneuvers amongst 

pedestrians, cyclists, and vehicles

• 4 stage algorithm

• Routing / GPS

• Guiding Path Computation

• Collision-avoidance / Dynamics Constraints

• Optimization-based Maneuvering

144

GPS Routing Guiding Path Optimization-based  
Maneuvering



Autonovi: Routing / GPS

• Generates maneuvers between vehicle position 

and destination

• Nodes represent road transitions

• Allows vehicle to change lanes between 

maneuvers

145

• Computes “ideal” path vehicle should follow

• Respects traffic rules

• Path computed and represented as arc

• Generates target controls 

Autonovi: Guiding Path

GPS Routing

Guiding Path



Autonovi: Collision Avoidance / Dynamics

• Control Obstacles [Bareiss 2015]

• “Union of all controls that could lead to collisions with the 

neighbor within the time horizon, τ” 

• Plan directly in control space (throttle, steering)

• Construct “obstacles” for nearby entities

• Key principles / Assumptions

• Reciprocity in avoidance (all agents take equal share)

• Bounding discs around each entity

• Controls / decisions of other entities are observable

• New controls chosen as minimal deviation from target s. t. the 

following is not violated: 

146[Bareiss 2015]



Autonovi: Collision Avoidance / Dynamics

• Goal: Augment control obstacles with dynamics constraints

• Generate dynamics profile for vehicles through profiling

• repeated simulation for each vehicle testing control inputs

• Represent underlying dynamics without

specific model

• Gather data to generate approximation 

functions for non-linear vehicle dynamics

• S(μ)  : target controls are safe given                   

current vehicle state 

• A(μ) : Expected acceleration given 

effort and current state

• Φ(μ) : Expected steering change given 

effort and current state
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

• Obstacles constructed from dynamics

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

• Obstacles constructed from dynamics

• New velocity chosen by cost-optimization

Autonovi: Collision Avoidance / Dynamics
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Autonovi: Collision Avoidance / Dynamics

• Advantages of augmented control obstacles:

• Free-space is guaranteed feasible and safe

• Conservative linear constraints from surface 

of obstacles

• Disadvantages:

• Closed-form of surface may not exist

• Space may be non-convex

• Computationally expensive
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Autonovi: Collision Avoidance / Dynamics

• Sampling approach

• Construct candidate controls via sampling near target controls

• Evaluate collision-avoidance and dynamics constraints

• Forward integrate safe controls to generate candidate trajectories

• Choose “optimal” control set in optimization stage
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Proximity (cyclists, vehicle, pedestrians)
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Static cost for lane changes

• Cost inverse to distance if vehicle occupies incorrect lane as 

maneuver approaches

• Proximity (cyclists, vehicle, pedestrians)
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Proximity (cyclists, vehicle, pedestrians)

• Configurable cost per entity type

• Generates safe passing buffers

156



Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Results: Sudden Hazards @ 20 mph

• Vehicle responds quickly to sudden hazards

• Braking and swerving to avoid collisions
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Results: Sudden Hazards @ 60 mph

• Vehicle responds quickly to sudden hazards

• Respects unique dynamics of each car
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Results: Jaywalking Pedestrian

• Vehicle accounts for pedestrians and comes to a stop
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Results: Jaywalking Pedestrian

• Vehicle accounts for pedestrians and comes to a stop

• Respects unique dynamics of each car
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Results: Passing Cyclists

• Vehicle changes lanes to safely pass cyclist
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Results: Passing Cyclists

• Vehicle changes lanes to safely pass cyclist

• Lane change only when possible
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Results: Next Steps

• Generating data for deep-learning

• Growing consensus that synthetic data is necessary for AV training
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Results: Next Steps

• Using real-world training data, behaviors can be optimized to improve realism

• Ex: Drivers behave more like human drivers

• Ex: Infrastructure tuned to specific real patterns

• Vehicle sensors can be similarly calibrated
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Maneuver Planner: Project ideas

 Improving tracking using a deep learnt pedestrian detection framework 

 Biometric Walk: Learning and classifying pedestrian trajectories/behavior to a specific person to improve person 

identification

 Autonomous intelligent navigation of robots in a crowd (Pepper) 

 Anomaly Detection using machine learning on a synthetic dataset

 Designing models for robots to be more socially-tolerant. Improve the personal space from SocioSense to more 

than just a fixed circle - a probabilistic comfort zone.
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Maneuver Planner: Project ideas

 Sampling-based planner / Parameter optimization

 Trajectory Analysis / simulation data logging and analysis

 Perception models for detection (pedestrian detection from simulation)

 Modelling sensors (virtual lidar etc)

 Driver behavior learning and classification

 Implementing alternate planners (elastic band / rrt / state lattice / etc)

 Cyclist and Pedestrian planning expansion in AutonoVi-Sim

 Modelling better fidelity weather and its impact on sensor information
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Maneuver Planner: Related reading

Katarakazas: Real-time motion planning methods for autonomous on-road 

driving: State-of-the-art and future research directions

Pendleton et al.:  Perception, Planning, Control, and Coordination for 

Autonomous Vehicles

Lefèvre et al. : A survey on motion prediction and risk assessment for 

intelligent vehicles

Saifuzzaman et al:  Incorporating human-factors in car-following models: a 

review of recent developments and research needs

Bast et al.: Route planning in transportation networks
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Questions
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