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 Homework due:

 11:59 PM October 4th (tomorrow)

 Project Proposals:

 Next week

 should make a WWW page of your project topic, 4 parts:

 1. What is the goal of your project? What is your motivation?

 2. What is the prior state of the art? Please include pointers to related work or WWW sites related to the prior work?

 3. What do you plan to accomplish over the semester?

 4. What is your timeline between Oct. 10 - Dec. 8? Remember the final project presentation would be after Dec. 8 

deadline. I want you to come up with 2 week milestones (between Oct. 10 - Dec. 8) and put them on the WWW page? 

That way I want to make sure that you have thought in detail about the todo list for the project.

 15-20 minute presentation slot on Oct. 10
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Administrative



Motion Planning: term used in robotics for the process of breaking down a 

desired movement task into discrete motions that satisfy movement 

constraints and possibly optimize some aspect of the movement
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Main Idea



Motion Planning

Fuse prior information, sensing, mapping, etc. to generate:

Set of actions leading from some initial state to a goal

OR continuous action function from initial state to goal

Motion planning for navigation is:

Hierarchical

Recurrent
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Main Idea



Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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University of North Carolina at Chapel Hill

Autonomous vehicle: a motor vehicle that uses artificial intelligence, 

sensors and global positioning system coordinates to drive itself without the 

active intervention of a human operator

Focus of enormous investment [$1b+ in 2015]
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Tesla

Waymo

Nutonomy

Autonomous Driving



Autonomous Driving: Levels of Autonomy

 0: Standard Car

 1:  Assist in some part of driving

 Cruise control

 2: Perform some part of driving

 Adaptive CC + lane keeping

 3: Self-driving under ideal conditions

 Human must remain fully aware

 4: Self-driving under near-ideal conditions

 Human need not remain constantly aware

 5: Outperforms human in all circumstances
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Autonomous Driving

Urban driving is particularly challenging 
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Autonomous Driving: Main Components
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Autonomous Driving: Main Components
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Perception

Collect information and extract relevant knowledge from the 

environment.



Autonomous Driving: Main Components
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Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals



Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Perception using LIDAR

Light Detection and Ranging

 Illuminate target using pulsed laser lights, and measure reflected pulses 

using a sensor
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Autonomous Driving: Perception using LIDAR

LIDAR in practice

Velodyne 64HD lidar

https://www.youtube.com/watch?v=nXlqv_k4P8Q
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https://www.youtube.com/watch?v=nXlqv_k4P8Q


Autonomous Driving: Perception using Cameras

Camera based vision

Road detection

Lane marking detection

Road surface detection

On-road object detection
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Autonomous Driving: Perception using Cameras

Sensing Challenges

Sensor Uncertainty

Sensor Configuration

Weather / Environment
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Structure

Recap

 Perception

 Localization

 Planning

 State, Kinematics, and Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Vehicle Localization

Determining the pose of the ego vehicle and measuring its own motion

Fusing data

Satellite-based navigation system

 Inertial navigation system

Map aided localization

SLAM
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Structure

Recap

 Perception

 Localization

 Planning

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Autonomous Driving: Planning

Compare to Pedestrian Techniques:

Route Planning: road selection (global)

Path Planning: preferred lanes (global)

Maneuver-search: high level maneuvers 

(local)

Trajectory planning: Lowest level of 

planning (local)
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Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim
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Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

Recall Pedestrian Planning:

Roadmap is essential a graph 

of potential agent states
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Autonomous Driving: State Space

Examples:

3D space with velocity

(px, py, pz, θx, θy, θz, vx, vy, vz, ωx,ωy,ωz)

( Ԧ𝑝, Ԧ𝜃, Ԧ𝑣, 𝜔)

2D space with acceleration

(𝑝𝑥 , 𝑝𝑦 , 𝜃, 𝑣𝑥, 𝑣𝑦, 𝜔, 𝑎𝑥 , 𝑎𝑦 , 𝛼)

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, Ԧ𝑎, 𝛼
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Autonomous Driving: State Space

Examples:

2D space with blinker booleans

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, 𝑏𝑙𝑙 , 𝑏𝑙𝑟
State contains everything we need to describe the 

robot’s current configuration!

Neglect some state variables when planning
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Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim
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Autonomous Driving: Holonomicity

“Holonomic” robots

Robots whose motion capability is independent of 

their orientation

Controllable DOF == total DOF

Examples:

Quad-rotors

Omni-drive base

https://youtu.be/9ZCUxXajzXs
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https://youtu.be/9ZCUxXajzXs


Autonomous Driving: Holonomicity

Cars are “non-holonomic” robots

Typically 5 values describing physical

(2 Cartesian coordinates, orientation, linear 

speed, angular speed)

2 “kinematic” constraints

Can only move forward or backward, tangent 

to body direction

Can only steer in bounded radius
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Kinematic Constraints

Kinematics of Motion

“the branch of mechanics that deals with pure motion, 

without reference to the masses or forces involved in it”

Equations describing conversion between control and 

motion

Control: inputs to the system

In vehicle: steering and throttle

Also referred to as “Action” in literature
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Autonomous Driving: Holonomicity

kinematic and dynamic constraints can be considered 

“rules” governing the state evolution function

For state 𝑠𝑡 ∈ 𝑆, control input 𝑢𝑡 ∈ U, time 𝑡 ∈ 𝑇:

F(st, u𝑡 , Δ𝑡) → st+1
Ex:

 A car cannot turn in place. No amount of steering 

will accomplish this

A Roomba can turn in place
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Kinematic Constraints

Kinematic models of a car

Single-track Bicycle (or simple car model)

3-DOF configuration: (x,y,θ)

2-DOF control: steering (φ), speed (v)

Full state: (x,y,θ,v, φ,L)

Equations of motion:

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
𝑣

𝐿
∗ tan 𝜙
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Kinematic Constraints

Kinematic models of a car

Single-track Bicycle example

https://www.youtube.com/watch?v=TyW1BPpHy

18

Kinematic robot simulator provided as part of 

HW3
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https://www.youtube.com/watch?v=TyW1BPpHy18


Kinematic Constraints

Kinematic models of a car

Extended Car  w. linear integrators

6-DOF configuration (x,y,θ, φ,v,𝜔)

2-DOF Control:

steering rate (𝑢𝑠), acceleration (𝑢𝑣)

Full state (𝑥, 𝑦, 𝜃, 𝑣, 𝜙, 𝜔, 𝑢𝑠, 𝑢𝑣, L)
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Kinematic Constraints

Extended Car  w. linear integrators

Equations of motion

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
tan(𝜙)

𝐿
ሶ𝜙 = 𝜔 ሶ𝜔 = 𝜇𝑠

ሶ𝑣 = 𝑢𝑣
Steering is continuous C1

Velocity continuous

Control is more complex 
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Kinematic Constraints

Example: Stopping the car

Simple-car: 𝑢𝑣 = 0

LI-car 𝑢𝑣 = −𝑣 iff max 𝑈𝑣 ≥ 𝑣 𝑒𝑙𝑠𝑒max 𝑈𝑣
Car will not necessarily stop right away

Error increases as we increase the number of 

integrators
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Kinematic Constraints

Kinematic models of a car

Extended Car  w. linear integrators

https://www.youtube.com/watch?v=3Q31mA5Aj-

c
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https://www.youtube.com/watch?v=3Q31mA5Aj-c
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Dynamic Constraints

“the branch of mechanics concerned with the motion 

of bodies under the action of forces.”

Tires subject to lateral and longitudinal force during 

steering / accelerating

 If lateral force exceeds friction force

Fishtailing

 If longitudinal force exceeds friction force

Peel out / skid
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Dynamic Constraints

No longer directly control acceleration and steering

Apply engine force

Apply steering force

Diminishing returns on each force at limits of control
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Dynamic Constraints

Dynamic Bicycle model with linear tires

No load transfer between tires

Larger state space including tire stiffness
 𝐹𝑥 longitudinal force

 𝐹𝑦 lateral force

 m mass

 𝐼𝑧 yaw moment of intertia

41



Dynamic Constraints

Dynamic Bicycle model with linear tires

𝐹𝑦 lateral force on tire

𝐹𝑥 longitudinal force on tire

𝛼𝑓 “slip angle” of tire

𝛿 steering angle
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Dynamic Constraints

Dynamic constraints

Correcting for slip

https://www.youtube.com/watch?v=itggGQu_ECc
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https://www.youtube.com/watch?v=itggGQu_ECc


Dynamic Constraints

Models increase in complexity as needed for 

performance tuning

Aerodynamic drag force

Maximum engine torque

Each layer of dynamics:

 Increases accuracy of model

 Increases computational complexity

44



Dynamic Constraints

Dynamic constraints

Adjusting for drag & lateral forces

https://youtu.be/tesD4F-HOxs?t=1m24s
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https://youtu.be/tesD4F-HOxs?t=1m24s


Dynamic Constraints

Extended vehicle with load transfer
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AutonoVi-Sim
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Autonomous Driving: Main Components

48

Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals
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Mission Planner (Route Planning)

 Determine the appropriate macro-level route to take

 Typically road level i.e. which roads to take

 Katrakazas: “Route planning is concerned with finding the best global route from a 

given origin to a destination, supplemented occasionally with real-time traffic 

information”
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Mission Planner (Route Planning)

 Pendleton: “considers high level objectives, such as assignment of pickup/dropoff

tasks and which roads should be taken to achieve the task”

 Typical approaches:

 RNG (Road-network Graph)

A*

Dijkstras

 Scale poorly!
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Mission Planner (Route Planning)

Massive-scale algorithms needed

for routing

 18 million vertices, 42.5 million edges

 Partial Western Europe dataset
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Bast, H., Delling, D., Goldberg, A., Müller-Hannemann, M., Pajor, T., 

Sanders, P., … Werneck, R. F. (2015). Route Planning in Transportation 

Networks. Microsoft Research Technical Report, 1–65. 



Mission Planner

 High Performance Multi-Level (Delling et al.)

 Hierarchical decomposition of input graph

 Compute large set of partial graphs

 Optimize subgraphs

Remove “unused” edges

Reorder graph to prioritize shortest paths
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Mission Planner

 HPML (Delling et al.)

 Optimize subgraphs

Remove “unused” edges

Reorder graph to prioritize 

shortest paths

 Queries ~40𝜇𝑠 on 18 million 

vertices
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Delling, D., Holzer, M., Kirill, M., Schulz, F., & Wagner, D. 

(2008). High-Performance Multi-Level Routing, 2, 1–19.



Mission Planner

 HPML (Delling et al.)
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Structure

Recap
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AutonoVi-Sim

56



Behavior Planner

 “makes ad hoc decisions to properly interact with other agents and follow rules 

restrictions, and thereby generates local objectives, e.g., change lanes, overtake, or 

proceed through an intersection”

 Finite State Machines

 Finite time maneuvers
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Behavior Planner

 Finite State Machines

Set of “states” and transition functions 

between them

Separate from configuration state
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Behavior Planner

59

Example from crowd sim

AI Technique

Defines a set of States and Transition functions between them

Allows us to represent complex behaviors with simple components

Start

Find 

Luggage

Wait 

For 

Help

Get 

Luggage

50%

50%

Attendant

Arrives

Luggage Reached

Exit 

Plane

Luggage Obtained

No Luggage



Behavior Planner

 FSMs limited in some cases

 What to do in unseen situations?

 Real-time decision making [Furda et al 2011]
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Furda, A., & Vlacic, L. (2011). Enabling safe autonomous driving in real-world city 

traffic using Multiple Criteria decision making. IEEE Intelligent Transportation 

Systems Magazine, 3(1), 4–17. http://doi.org/10.1109/MITS.2011.940472



Behavior Planner

 Limited discrete maneuver curve example

 https://youtu.be/5ATo6hheV9U
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Recap

 State, Kinematics, and Dynamics Models
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 Behavior Planner

Maneuver Planner / Motion Planner

AutonoVi-Sim
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Maneuver Planner / Motion Planner

 Pendleton: generates appropriate paths and/or sets of actions to achieve local 

objectives, with the most typical objective being to reach a goal region while avoiding 

obstacle collision 
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Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.
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Motion Planner

 Pendleton: generates appropriate paths and/or sets of actions to achieve local 

objectives, with the most typical objective being to reach a goal region while avoiding 

obstacle collision 
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Motion Planner

 How do we evaluate them?

 Complexity (computation cost)

 limits how frequently we can replan

NEVER get it perfectly right, so we focus on replanning as fast as possible

 Completeness (likelihood that a solution will be found if one exists)

The piano-movers problem is PSPACE-HARD

must guarantee safety

i.e. must be sure we can deal with error and recover
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Motion Planner

 Piano mover’s problem

 https://youtu.be/cXm3WW-geD8
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning
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Motion Planner

 Basic overview

 Complete planning - continuous plan in configuration space

Exponential in dimensions of c-space (curse of dimensionality)

"Complete"

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

 Sample-Based planning:
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

Exponential in dimensions of c-space discretization (curse of dimensionality)

"resolution complete"

 Sample-Based planning
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning - Sample in space to find controls / positions which are 

collision free and linked

Probabilistically complete

Some “probabilistically optimal”

NOT exponential in configuration space
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Motion Planner: Combinatorial Planners

General Approaches:

convex obstacle spaces

NP-Hard

visibility graph (shortest path)

voronoi diagram (highest clearance)

obstacle-cells using boundaries 

and borders

72

Deits, R., & Tedrake, R. (2015). Computing large convex regions of obstacle-

free space through semidefinite programming. Springer Tracts in Advanced 

Robotics, 107, 109–124. http://doi.org/10.1007/978-3-319-16595-0_7



Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints

73

Deits, R., & Tedrake, R. (2015). Computing large convex 

regions of obstacle-free space through semidefinite 

programming. Springer Tracts in Advanced Robotics, 107, 

109–124. http://doi.org/10.1007/978-3-319-16595-0_7

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., … 

Zeeb, E. (2014). Making bertha drive-an autonomous journey on a historic route. 

IEEE Intelligent Transportation Systems Magazine, 6(2), 8–20. 

http://doi.org/10.1109/MITS.2014.2306552



Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints
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Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle constraints
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Motion Planner: Combinatorial Planners

Driving Corridors:

https://youtu.be/GfXg9ux4xUw?t=2m5s
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Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set

Trajectory planner generates candidate trajectories 

and goals

Done by precomputation of many curves 

“best” trajectory chosen by optimization

77

Urmson, C., Baker, C., Dolan, J., Rybski, P., Salesky, B., Whittaker, W., … 

Darms, M. (2009). Autonomous Driving in Traffic: Boss and the Urban 

Challenge. Al Magazine, 30(2), 17–28. http://doi.org/10.1002/rob



Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set
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Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set

https://www.youtube.com/watch?v=lULl63ERek0&t=89s

Other combinatorial approaches:

https://www.youtube.com/watch?v=3FNPSld6Lrg
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https://www.youtube.com/watch?v=lULl63ERek0&t=89s


Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

Generate cellular-grid representation of local space

Cells encode probability of occupancy

Moving obstacles propagate occupancy probability
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Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

Vehicle presence propagates forward

81

Broggi, A., Medici, P., Zani, P., Coati, A., & Panciroli, M. (2012). Autonomous 

vehicles control in the VisLab Intercontinental Autonomous Challenge. Annual 

Reviews in Control, 36(1), 161–171. http://doi.org/10.1016/j.arcontrol.2012.03.012



Motion Planner: Combinatorial Planners

Grid Decomposition approaches:

https://youtu.be/CRQfhhICSj0

https://youtu.be/MzpBzrtEGrA
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https://youtu.be/CRQfhhICSj0


Motion Planner: Combinatorial Planners

Correct by construction planners:

Concept: Encode discrete rules and available actions

Rules assigned priority in Finite Linear Temporal Logic

Rules define “cost” penalty for violation

Generate plan over discrete action space guaranteeing 

least-violation of rules

Essentially least-violating state-space search
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Motion Planner: Combinatorial Planners

Correct by construction planners:

Example rules:

Do not collide with traffic

Never head in wrong direction

Do not drive on sidewalk

Go to the goal
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Motion Planner: Combinatorial Planners

Correct by construction planners:

85

Green: Goal

Red: Obstacle

Lavendar: Sidewalk

Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., & Rus, D. 

(2013). Least-violating control strategy synthesis with safety 

rules. Proceedings of the 16th International Conference on 

Hybrid Systems: Computation and Control, 1–10. 

http://doi.org/10.1145/2461328.2461330



Maneuver Planner: Sample-based Planners

Pendleton: popular for their guarantees of probabilistic completeness, that is 

to say that given sufficient time to check an infinite number of samples, the 

probability that a solution will be found if it exists converges to one.

General approaches:

PRM: Probabilistic Roadmaps

RRT: Rapidly-Exploring Random Tree

FMT: Fast-Marching Trees
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Maneuver Planner: Sample-based Planners

Sample-based Planning specifically for cars:

Dynamics computation

 Inevitable collision states

“Space-time planning approaches”

Pendleton: “Incorporating differential constraints into state-sampling 

planners is still a challenging matter, and requires a steering function to 

draw an optimal path between two given states which obeys control 

constraints (if such a path exists), as well as efficient querying methods to 

tell whether a sampled state is reachable from a potential parent state"

87



Maneuver Planner: Sample-based Planners

RRT:

Given at-least one initial configuration in free-space and a goal 

configuration

Sample a point 𝑝 in configuration space, determine if it is collision 

free

If so, find nearest node 𝑛 to the point, move some 𝛿 towards the point

If  𝑛 to 𝑛 + 𝛿 is CLEAR, connect to the tree
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Maneuver Planner: Sample-based Planners

89

RRT



Maneuver Planner: Sample-based Planners

RRT:

https://www.youtube.com/watch?v=rPgZyq15Z-Q

https://www.youtube.com/watch?v=mEAr2FBUJEI

https://www.youtube.com/watch?v=p3p0EWT5lpw
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https://www.youtube.com/watch?v=rPgZyq15Z-Q
https://www.youtube.com/watch?v=mEAr2FBUJEI
https://www.youtube.com/watch?v=p3p0EWT5lpw


Maneuver Planner: Sample-based Planners

PRM: Incorporating dynamics: Sampling directly from admissible controls

 [Hsu et al]

Extends existing PRM framework

State × time space formulation

 state typically encodes both the configuration  and the velocity of the 

robot

91

Hsu, D., Kindel, R., Latombe, J.-C., & Rock, S. (2002). Randomized Kinodynamic

Motion Planning with Moving Obstacles. The International Journal of Robotics 

Research, 21(3), 233–255. http://doi.org/10.1177/027836402320556421



Maneuver Planner: Sample-based Planners

 Incorporating dynamics: Sampling directly from admissible controls

 [Hsu et al]

Represents kinodynamic constraints by a control system

 set of differential equations describing all possible local motions of a 

robot

Define set of piecewise constant control functions for finite time horizons
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Maneuver Planner: Sample-based Planners

93



NUS CS5247 94

Maneuver Planner: Sample-based Planners

 Check if m is in a ball of small radius 
centered at the goal.

 Limitation: relative volume of the ball -> 
0 as the dimensionality increases.

 Check whether a canonical control 
function generates a collision-free 
trajectory from m to (sg, tg)

 Build a secondary tree T’ of milestones 
from the goal with motion constraints 
equation backwards in time.

 Endgame region is the union of the 
neighborhood of milestones in T’



Maneuver Planner: Sample-based Planners

State-lattice planners

Generate set of potential future states through solving boundary-value 

problem

Generate connected “lattice” of potential future states expanding in time 

and space

95



Maneuver Planner: Sample-based Planners

State-lattice planners

Ex: Configurations in space

96

Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for 

fast trajectory planning in dynamic on-road driving scenarios. 

2009 IEEE/RSJ International Conference on Intelligent Robots 

and Systems, IROS 2009, 1879–1884. 

http://doi.org/10.1109/IROS.2009.5354448



Maneuver Planner: Sample-based Planners

State-lattice planners

1D Example in “l,” obstacle in red
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Maneuver Planner: Sample-based Planners

State-lattice planners

Transform road representation to 

longitudinal and lateral segments

Generate potential paths in parametrized 

space

Best path chosen by cost metric

Time, comfort, length
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Maneuver Planner: Sample-based Planners

State-lattice planners

https://www.youtube.com/watch?v=I5hL8vSo6DI

Notice the discrete maneuver points
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https://www.youtube.com/watch?v=I5hL8vSo6DI


Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Theoretically define “inevitable collision states”

Set of collision-avoiding controls is null

 Iterative check each candidate control s.t. subsequent 

controls are not ICS

Effective but very costly

100

Martinez-Gomez, L., & Fraichard, T. (2009). Collision avoidance in dynamic 

environments: An ICS-based solution and its comparative evaluation. 

Proceedings - IEEE International Conference on Robotics and Automation, 

100–105. http://doi.org/10.1109/ROBOT.2009.5152536



Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Area inside red region 

represents inevitable 

collisions

Different movements of B 

dramatically change 

𝐼𝐶𝑂 𝐵,𝜙
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Maneuver Planner: Sample-based Planners

 ICS-Avoidance

Area inside red region 

represents inevitable 

collisions

Different movements of B 

dramatically change 

𝐼𝐶𝑂 𝐵,𝜙
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Maneuver Planner: Obstacle Representation

Depending on our planning approach, we have options on how we want to 

represent obstacles

Obstacle-avoidance approaches

Space-time conics

RVOS

Critical-space planning
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Maneuver Planner: Obstacle Representation

Space-time conics

Choice in obstacle representation over time

104



Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Prohibit velocity choices leading to 

collision within a time horizon 

assuming reciprocity

Originally proposed for discs
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Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Constructs mutually exclusive 

velocity set choices for multiple 

robots

https://youtu.be/1Fn3Mz6f5xA?t=1m

24s
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https://youtu.be/1Fn3Mz6f5xA?t=1m24s


Maneuver Planner: Obstacle Representation

AVOs: Acceleration-Velocity Obstacles

Extends RVO concept to acceleration 

bounded shapes

https://youtu.be/BeNIPfWRLrY?t=2

3s
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https://youtu.be/BeNIPfWRLrY?t=23s


Maneuver Planner: Obstacle Representation

Control-Obstacles:

Plan avoidance directly in control 

space for arbitrary dynamics robots

https://youtu.be/X5nsubTAaWg?t=19s
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Maneuver Planner: Obstacle Representation

Critical-zone planning:

Determine “Critical zones” which 

trigger automatic stopping 

Allows specific behavior encoding at 

intersections and stop signs

109

Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., 

… Thrun, S. (2009). Junior: The stanford entry in the urban challenge. 

Springer Tracts in Advanced Robotics, 56(October 2005), 91–123. 

http://doi.org/10.1007/978-3-642-03991-1_3



Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.
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Maneuver Planner: Trajectory planning

Given a determined path, we must compute local inputs to track the path

Control theory, feedback applied over error in system

Several approaches

Pure-pursuit tracker

 Stanley Method

111



Structure

Recap

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Structure

Recap

Kinematics & Dynamics Models

 Planning

AutonoVi-Sim
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Andrew Best, Sahil Narang, Lucas Pasqualin, Daniel Barber, Dinesh Manocha

University of North Carolina at Chapel Hill

UCF Institute for Simulation and Training

http://gamma.cs.unc.edu/AutonoVi/

AutonoVi-Sim:
Modular Autonomous Vehicle Simulation Platform Supporting 

Diverse Vehicle Models, Sensor Configuration, and Traffic 

Conditions

http://gamma.cs.unc.edu/AutonoVi/


Motivation

• 1.2 billion vehicles on the roads today

• 84 million new vehicles in 2015

• China: 24 m          U.S.:   2.7m

• India:   3.7 m          S.E Asia: 3.8m

• Many markets expected to grow exponentially through 2030

115
New Delhi Bangkok



Motivation

• Majority of new vehicles in developing markets (30+ million)

• Limited infrastructure, loose traffic conventions

• Average vehicle life: 10+ years (17 years in U.S)
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Motivation

• Long before autonomy will reach this:

117

Au et al. 2012 Kabbaj, TED 2016



Motivation

• It will deal with situations like these:
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Motivation

• It will deal with situations like these:
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Motivation

• It will deal with situations like these:
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Challenges

• Safety guarantees are critical

• Drivers, pedestrians, cyclists difficult to predict

• Road and environment conditions are dynamic

• Laws and norms differ by culture

• Huge number of scenarios
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Challenges

• Development and testing of autonomous driving 

algorithms 

• On-road experiments may be hazardous

• Closed-course experiments may limit transfer

• High costs in terms of time and money

• Solution: develop and test robust algorithms in 

simulation 

• Test novel driving strategies & sensor 

configurations 

• Reduces costs

• Allows testing dangerous scenarios

• Vary traffic and weather conditions
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Simulated city



Contributions

• AutonoVi-Sim : high fidelity simulation platform for testing autonomous 

driving algorithms

• Varying vehicle types, traffic condition

• Rapid Scenario Construction

• Simulates cyclists and pedestrians

• Modular Sensor configuration, fusion

• Facilitates testing novel driving strategies
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Contributions

• AutonoVi: novel algorithm for autonomous vehicle navigation

• Collision-free, dynamically feasible maneuvers

• Navigate amongst pedestrians, cyclists, other vehicles

• Perform dynamic lane-changes for avoidance and overtaking

• Generalizes to different vehicles through data-driven dynamics 

approach

• Adhere to traffic laws and norms
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Related work:

• Traffic Simulation 

• MATSim [Horni 2016], SUMO [krajzewicz 2002]

• Autonomous Vehicle Simulation

• OpenAI Universe, Udacity

• Waymo Carcraft, Righthook.io

• Simulation integral to development of many 

controllers & recent approaches [Katrakazas2015].
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Related work:

• Collision-free navigation

• Occupancy grids[Kolski 2006], driving corridors [Hardy 2013]

• Velocity Obstacles [Berg 2011], Control obstacles [Bareiss 2015], 

polygonal decomposition [Ziegler 2014],  random exploration 
[Katrakazas 2015]

• Lateral control approaches [Fritz 2004, Sadigh 2016]

• Generating traffic behaviors

• Human driver model [Treiber 2006], data-driven [Hidas 2005], 

correct by construction [Tumova 2013], Bayesian prediction 
[Galceran 2015]
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Related work:

• Modelling Kinematics and Dynamics

• kinematic models [Reeds 1990, LaValle 2006, 

Margolis 1991]

• Dynamics models [Borrelli 2005]

• Simulation for Vision Training

• Grand Theft Auto 5 [Richter 2016, Johnson-Roberson 

2017] 
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Autonovi-Sim

• Modular simulation framework for generating dynamic traffic conditions, 

weather, driver profiles, and road networks

• Facilitates novel driving strategy development

130



Autonovi-Sim: Roads & Road Network

• Roads constructed by click and drag

• Road network constructed automatically

131

Road layouts



• Construct large road networks with minimal effort

• Provides routing and traffic information to vehicles

• Allows dynamic lane closures, sign obstructions

Autonovi-Sim: Roads & Road Network

Urban Environment for pedestrian 

& cyclist testing
4 kilometer highway on and off loop
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• Infrastructure placed as roads or overlays

• Provide cycle information to vehicles, can be 

queried and centrally controlled

Autonovi-Sim: Infrastructure 
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3 way, one lane

3 way, two lane

4 way, two lane



Autonovi-Sim: Environment

• Goal: Testing driving strategies & sensor configuration 

in adverse conditions 

• Simulate changing environmental conditions

• Rain, fog, time of day

• Modelling associated physical changes
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Fog reduces visibility Heavy rain reduces traction



Autonovi-Sim: Non-vehicle Traffic

• Cyclists 

• operate on road network

• Travel as vehicles, custom destinations and 

routing

• Pedestrians

• Operate on roads or sidewalks

• Programmable to follow or ignore traffic rules 

• Integrate prediction and personality parameters

135Pedestrian Motion Cyclist Motion



Autonovi-Sim: Vehicles

• Various vehicle profiles:

• Size, shape, color

• Speed / engine profile

• Turning / braking

• Manage sensor information

136

Multi-camera detectorLaser Range-finder Multiple Vehicle 
Configurations



Autonovi-Sim: Vehicles

• Sensors placed interactively on vehicle

• Configurable perception and detection algorithms
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Autonovi-Sim: Drivers

• Control driving decisions

• Fuse sensor information

• Determine new controls (steering, throttle)

• Configurable parameters representing 

personality

• Following distance, attention time, speeding, 

etc.

• Configure proportions of driver types

• i.e. 50% aggressive, 50% cautious
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Autonovi-Sim: Drivers

• 3 Drivers in AutonoVi-Sim

• Manual

• Basic Follower

• AutonoVi

139

Manual Drive Basic Follower AutonoVi



Autonovi-Sim: Results

• Simulating large, dense road networks

• Generating data for analysis, vision classification, autonomous driving 

algorithms

140

50 vehicles navigating (3x)



Autonovi-Sim: Results

• Interactive Simulation of hundreds of vehicles
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Autonovi-Sim: Results

• 600+ vehicles on 3.5 km
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Autonovi

• Computes collision free, dynamically feasible maneuvers amongst 

pedestrians, cyclists, and vehicles

• 4 stage algorithm

• Routing / GPS

• Guiding Path Computation

• Collision-avoidance / Dynamics Constraints

• Optimization-based Maneuvering

144

GPS Routing Guiding Path Optimization-based  
Maneuvering



Autonovi: Routing / GPS

• Generates maneuvers between vehicle position 

and destination

• Nodes represent road transitions

• Allows vehicle to change lanes between 

maneuvers

145

• Computes “ideal” path vehicle should follow

• Respects traffic rules

• Path computed and represented as arc

• Generates target controls 

Autonovi: Guiding Path

GPS Routing

Guiding Path



Autonovi: Collision Avoidance / Dynamics

• Control Obstacles [Bareiss 2015]

• “Union of all controls that could lead to collisions with the 

neighbor within the time horizon, τ” 

• Plan directly in control space (throttle, steering)

• Construct “obstacles” for nearby entities

• Key principles / Assumptions

• Reciprocity in avoidance (all agents take equal share)

• Bounding discs around each entity

• Controls / decisions of other entities are observable

• New controls chosen as minimal deviation from target s. t. the 

following is not violated: 

146[Bareiss 2015]



Autonovi: Collision Avoidance / Dynamics

• Goal: Augment control obstacles with dynamics constraints

• Generate dynamics profile for vehicles through profiling

• repeated simulation for each vehicle testing control inputs

• Represent underlying dynamics without

specific model

• Gather data to generate approximation 

functions for non-linear vehicle dynamics

• S(μ)  : target controls are safe given                   

current vehicle state 

• A(μ) : Expected acceleration given 

effort and current state

• Φ(μ) : Expected steering change given 

effort and current state
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Dynamics Profile Generation



• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

• Obstacles constructed from dynamics

Autonovi: Collision Avoidance / Dynamics
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• Augmented Control Obstacles

• Reciprocity is not assumed from others

• Use tightly fitting bounding polygons

• Do not assume controls of others are 

observable

• New controls chosen from optimization stage

• Obstacles constructed from avoidance

• Obstacles constructed from dynamics

• New velocity chosen by cost-optimization

Autonovi: Collision Avoidance / Dynamics
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Autonovi: Collision Avoidance / Dynamics

• Advantages of augmented control obstacles:

• Free-space is guaranteed feasible and safe

• Conservative linear constraints from surface 

of obstacles

• Disadvantages:

• Closed-form of surface may not exist

• Space may be non-convex

• Computationally expensive
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Autonovi: Collision Avoidance / Dynamics

• Sampling approach

• Construct candidate controls via sampling near target controls

• Evaluate collision-avoidance and dynamics constraints

• Forward integrate safe controls to generate candidate trajectories

• Choose “optimal” control set in optimization stage
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Proximity (cyclists, vehicle, pedestrians)
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Static cost for lane changes

• Cost inverse to distance if vehicle occupies incorrect lane as 

maneuver approaches

• Proximity (cyclists, vehicle, pedestrians)
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Autonovi: Optimization-Based Maneuvering

• Choose “optimal” controls through multi-objective cost function

• Path (velocity, drift, progress)

• Comfort (acceleration, yaw)

• Maneuver (lane change, node distance)

• Proximity (cyclists, vehicle, pedestrians)

• Configurable cost per entity type

• Generates safe passing buffers
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Overview

• Motivation

• Related Work

• Contributions:

• Simulation Platform: Autonovi-Sim

• Navigation Algorithm: Autonovi

• Results
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Results: Sudden Hazards @ 20 mph

• Vehicle responds quickly to sudden hazards

• Braking and swerving to avoid collisions
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Results: Sudden Hazards @ 60 mph

• Vehicle responds quickly to sudden hazards

• Respects unique dynamics of each car
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Results: Jaywalking Pedestrian

• Vehicle accounts for pedestrians and comes to a stop
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Results: Jaywalking Pedestrian

• Vehicle accounts for pedestrians and comes to a stop

• Respects unique dynamics of each car
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Results: Passing Cyclists

• Vehicle changes lanes to safely pass cyclist
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Results: Passing Cyclists

• Vehicle changes lanes to safely pass cyclist

• Lane change only when possible
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Results: Next Steps

• Generating data for deep-learning

• Growing consensus that synthetic data is necessary for AV training

166



Results: Next Steps

• Using real-world training data, behaviors can be optimized to improve realism

• Ex: Drivers behave more like human drivers

• Ex: Infrastructure tuned to specific real patterns

• Vehicle sensors can be similarly calibrated
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Maneuver Planner: Project ideas

 Improving tracking using a deep learnt pedestrian detection framework 

 Biometric Walk: Learning and classifying pedestrian trajectories/behavior to a specific person to improve person 

identification

 Autonomous intelligent navigation of robots in a crowd (Pepper) 

 Anomaly Detection using machine learning on a synthetic dataset

 Designing models for robots to be more socially-tolerant. Improve the personal space from SocioSense to more 

than just a fixed circle - a probabilistic comfort zone.
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Maneuver Planner: Project ideas

 Sampling-based planner / Parameter optimization

 Trajectory Analysis / simulation data logging and analysis

 Perception models for detection (pedestrian detection from simulation)

 Modelling sensors (virtual lidar etc)

 Driver behavior learning and classification

 Implementing alternate planners (elastic band / rrt / state lattice / etc)

 Cyclist and Pedestrian planning expansion in AutonoVi-Sim

 Modelling better fidelity weather and its impact on sensor information
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Maneuver Planner: Related reading

Katarakazas: Real-time motion planning methods for autonomous on-road 

driving: State-of-the-art and future research directions

Pendleton et al.:  Perception, Planning, Control, and Coordination for 

Autonomous Vehicles

Lefèvre et al. : A survey on motion prediction and risk assessment for 

intelligent vehicles

Saifuzzaman et al:  Incorporating human-factors in car-following models: a 

review of recent developments and research needs

Bast et al.: Route planning in transportation networks
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Questions
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