
Comp 790-058 Lecture 10: 

Autonomous Driving: Control, Traffic, 

Predictions

October 24, 2017

Andrew Best

University of North Carolina, Chapel Hill

1



 Homework 2 due:

 11:59 PM October 30th

 Homework 3:

 Not today! But this week.

 Project Updates:

 Remember to work consistently on projects

 It WILL sneak up on you

 AutonoVi Updates:

 Git setup

 If you need access, please see me after class

2

Administrative



Structure

Recap

 Perception

 Localization

 State / Kinematics / Dynamics

 Planning

Control

 Traffic-Sim

 Prediction

3



University of North Carolina at Chapel Hill

Autonomous vehicle: a motor vehicle that uses artificial intelligence, 

sensors and global positioning system coordinates to drive itself without the 

active intervention of a human operator

Focus of enormous investment [$1b+ in 2015]

4

Tesla

Waymo

Nutonomy

Autonomous Driving



Autonomous Driving: Levels of Autonomy

 0: Standard Car

 1:  Assist in some part of driving

 Cruise control

 2: Perform some part of driving

 Adaptive CC + lane keeping

 3: Self-driving under ideal conditions

 Human must remain fully aware

 4: Self-driving under near-ideal conditions

 Human need not remain constantly aware

 5: Outperforms human in all circumstances

5



Autonomous Driving: Main Components

6



Structure

Recap

 Perception

 Localization

 State / Kinematics / Dynamics

 Planning

Control

 Traffic-Sim

 Prediction

7



Autonomous Driving: Perception using LIDAR

Light Detection and Ranging

 Illuminate target using pulsed laser lights, and measure reflected pulses 

using a sensor

8



Autonomous Driving: Perception using LIDAR

LIDAR in practice

Velodyne 64HD lidar

https://www.youtube.com/watch?v=nXlqv_k4P8Q

9

https://www.youtube.com/watch?v=nXlqv_k4P8Q


Autonomous Driving: Perception using Cameras

Camera based vision

Road detection

Lane marking detection

Road surface detection

On-road object detection

10



Autonomous Driving: Perception using Cameras

Sensing Challenges

Sensor Uncertainty

Sensor Configuration

Weather / Environment

11



Structure

Recap

 Perception

 Localization

 State / Kinematics / Dynamics

 Planning

Control

 Traffic-Sim

 Prediction

12



Autonomous Driving: Vehicle Localization

Determining the pose of the ego vehicle and measuring its own motion

Fusing data

Satellite-based navigation system

 Inertial navigation system

Map aided localization

SLAM

13



Structure

Recap

 Perception

 Localization

 State / Kinematics / Dynamics

 Planning

Control

 Traffic-Sim

 Prediction

14



Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy

15



Autonomous Driving: State Space

Recall Pedestrian Planning:

Roadmap is essential a graph 

of potential agent states

16



Autonomous Driving: State Space

Examples:

2D space with blinker booleans

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, 𝑏𝑙𝑙 , 𝑏𝑙𝑟
State contains everything we need to describe the 

robot’s current configuration!

Neglect some state variables when planning

17



Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim

18



Autonomous Driving: Holonomicity

Cars are “non-holonomic” robots

Typically 5 values describing physical

(2 Cartesian coordinates, orientation, linear 

speed, angular speed)

2 “kinematic” constraints

Can only move forward or backward, tangent 

to body direction

Can only steer in bounded radius

19



Kinematic Constraints

Kinematics of Motion

“the branch of mechanics that deals with pure motion, 

without reference to the masses or forces involved in it”

Equations describing conversion between control and 

motion

Control: inputs to the system

In vehicle: steering and throttle

Also referred to as “Action” in literature

20



Autonomous Driving: Holonomicity

kinematic and dynamic constraints can be considered 

“rules” governing the state evolution function

For state 𝑠𝑡 ∈ 𝑆, control input 𝑢𝑡 ∈ U, time 𝑡 ∈ 𝑇:

F(st, u𝑡 , Δ𝑡) → st+1
Ex:

 A car cannot turn in place. No amount of steering 

will accomplish this

A Roomba can turn in place

21



Kinematic Constraints

Kinematic models of a car

Single-track Bicycle (or simple car model)

3-DOF configuration: (x,y,θ)

2-DOF control: steering (φ), speed (v)

Full state: (x,y,θ,v, φ,L)

Equations of motion:

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
tan(𝜙)

𝐿

22



Kinematic Constraints

Single-track bicycle example

 [github link to my project]

23



Structure

Recap

 State, Kinematics, and Dynamics Models

 State Space

Kinematic constraint models of the vehicle

Dynamic constraint models of the vehicle

 Planning

AutonoVi-Sim

24



Dynamic Constraints

“the branch of mechanics concerned with the motion 

of bodies under the action of forces.”

Tires subject to lateral and longitudinal force during 

steering / accelerating

 If lateral force exceeds friction force

Fishtailing

 If longitudinal force exceeds friction force

Peel out / skid

25



Dynamic Constraints

No longer directly control acceleration and steering

Apply engine force

Apply steering force

Diminishing returns on each force at limits of control

26



Dynamic Constraints

Dynamic Bicycle model with linear tires

No load transfer between tires

Larger state space including tire stiffness
 𝐹𝑥 longitudinal force

 𝐹𝑦 lateral force

 m mass

 𝐼𝑧 yaw moment of intertia

27



Dynamic Constraints

Dynamic Bicycle model with linear tires

𝐹𝑦 lateral force on tire

𝐹𝑥 longitudinal force on tire

𝛼𝑓 “slip angle” of tire

𝛿 steering angle

28



Dynamic Constraints

Models increase in complexity as needed for 

performance tuning

Aerodynamic drag force

Maximum engine torque

Each layer of dynamics:

 Increases accuracy of model

 Increases computational complexity

29



Structure

Recap

 Perception

 Localization

 State / Kinematics / Dynamics

 Planning

Control

 Traffic-Sim

 Prediction

30



Autonomous Driving: Main Components

31

Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals



Motion Planning: term used in robotics for the process of breaking down a 

desired movement task into discrete motions that satisfy movement 

constraints and possibly optimize some aspect of the movement

32

Main Idea



Autonomous Driving: Planning

Compare to Pedestrian Techniques:

Route Planning: road selection (global)

Path Planning: preferred lanes (global)

Maneuver-search: high level maneuvers 

(local)

Trajectory planning: Lowest level of 

planning (local)

33



Mission Planner (Route Planning)

 Pendleton: “considers high level objectives, such as assignment of pickup/dropoff

tasks and which roads should be taken to achieve the task”

 Typical approaches:

 RNG (Road-network Graph)

A*

Dijkstras

 Scale poorly!

34



Mission Planner (Route Planning)

Massive-scale algorithms needed

for routing

 18 million vertices, 42.5 million edges

 Partial Western Europe dataset

35



Behavior Planner

 Finite State Machines

Set of “states” and transition functions 

between them

Separate from configuration state

36



Behavior Planner

 FSMs limited in some cases

 What to do in unseen situations?

 Real-time decision making [Furda et al 2011]

37



Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.

38



Motion Planner

 Basic overview

 Complete planning - continuous plan in configuration space

Exponential in dimensions of c-space (curse of dimensionality)

"Complete"

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

 Sample-Based planning:

39



Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

Exponential in dimensions of c-space discretization (curse of dimensionality)

"resolution complete"

 Sample-Based planning

40



Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning - Sample in space to find controls / positions which are 

collision free and linked

Probabilistically complete

Some “probabilistically optimal”

NOT exponential in configuration space

41



Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints

42



Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set

43



Maneuver Planner: Sample-based Planners

Sample-based Planning specifically for cars:

Dynamics computation

 Inevitable collision states

“Space-time planning approaches”

Pendleton: “Incorporating differential constraints into state-sampling 

planners is still a challenging matter, and requires a steering function to 

draw an optimal path between two given states which obeys control 

constraints (if such a path exists), as well as efficient querying methods to 

tell whether a sampled state is reachable from a potential parent state"

44



Maneuver Planner: Sample-based Planners

RRT:

Given at-least one initial configuration in free-space and a goal 

configuration

Sample a point 𝑝 in configuration space, determine if it is collision 

free

If so, find nearest node 𝑛 to the point, move some 𝛿 towards the point

If  𝑛 to 𝑛 + 𝛿 is CLEAR, connect to the tree

45



Maneuver Planner: Sample-based Planners

State-lattice planners

Generate set of potential future states through solving boundary-value 

problem

Generate connected “lattice” of potential future states expanding in time 

and space

46



Maneuver Planner: Sample-based Planners

State-lattice planners

Ex: Configurations in space

47



Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Constructs mutually exclusive 

velocity set choices for multiple 

robots

https://youtu.be/1Fn3Mz6f5xA?t=1m

24s

48

https://youtu.be/1Fn3Mz6f5xA?t=1m24s


Structure

Recap

Control

Core concepts

 PID

MPC

 Traffic-Sim

 Prediction

49



Autonomous Driving: Main Components

50

Control

Executing the planned maneuvers accounting for error / uncertainty

Commands sent to

actuators



Control: Core Concepts

Automatic control in engineering and technology is a wide generic term 

covering the application of mechanisms to the operation and regulation of 

processes without continuous direct human intervention

Open-loop control: Control input delivered independent of measurements

Closed-loop control: Control input determined by system outputs

51



Control: Core Concepts

Open-loop control examples

Timers: 

Electronic timing switches

Clothes Dryer

Simple throttle (non-electronic)

Motorbikes, go-karts

Stove-top gas

Sinks / simple valves

Hot water / cold water

52



Control: Core Concepts

Closed-loop control examples

Thermostat:

Engages air-conditioning depending on temperature

Oven:

Heating element controlled by temperature

Cruise-control:

Throttle controlled by current speed / acceleration

Used EXTENSIVELY in plant control (i.e. chemical, 

energy)

53



Control: Core Concepts

Process Variable (PV): The system output we wish to control

Set Point (SP): Target value of the process Variable

Control Output (CO): Output of the controller (input to the system)

Error (E): Difference between SP and PV

54

https://www.dataforth.com/introduction-to-pid-control.aspx



Control: Core Concepts

Example: Water Plant Thermal Control

Water kept at constant temperature by gas heater

 If level rises, gas reduced to stabilize

PV: Temperature of water

SP: Desired Temperature

CO: Level of gas applied to burner

55

https://www.dataforth.com/introduction-to-pid-control.aspx



Control: Core Concepts

Can we replace the manual control with automatic controller?

 ->

Of course, we can!

56



Structure

Recap

Control

Core concepts

 PID

MPC

 Path Tracking

 Traffic-Sim

 Prediction

57



Control: PID

Proportional-Integral-Derivative Controller:  control loop feedback 

mechanism widely used in industrial control systems and a variety of other 

applications requiring continuously modulated control. 

Continuously calculates E, applies correction based on proportional, 

integral, and derivative terms (denoted P, I, and D respectively

Proportion (P): Current error, E (typically SP – PV)

 Integral (I): integral of E (sum of errors over time)

Derivative (D): derivative of E  (typically finite difference)

58



Control: PID

Proportional-Integral-Derivative Controller:  control loop feedback 

mechanism widely used in industrial control systems and a variety of other 

applications requiring continuously modulated control. 

59



Control: PID

Proportion: Output controlled by error and 

Controller Gain (Kp)

Control output proportional to error

Choice of error function, but typically SP – PV

High gain: can cause oscillation

Low gain: fails to correct to Set Point 

60



Control: PID

Proportion-only controller: Output controlled by 

error and Controller Gain (Kp)

Control output proportional to error

Choice of error function, but typically SP – PV

Add bias point for steady output at 0 error

61



Control: PID

P-only controller

Bias controls steady output

https://sites.google.com/site/fpgaandco/pid

62

https://sites.google.com/site/fpgaandco/pid


Control: PID

 Integral Control: Output term controlled by 

integral of error and Integral Gain (Ki)

Corrects “steady-state” error

Requires a “time” factor for integration (Ti)

Longer time = less integral action

63



Control: PID

PI Controller: Proportion and integral terms

Corrects steady-state error, converges rather than 

oscillates

64



Control: PID

Derivative: Output term controlled by derivative 

of error and Derivative Gain (Kd)

Assists in rapid response to disturbance

Requires time parameter to operate

65



Control: PID

PID Controller: Proportion, Integral, Derivative 

terms

Complete closed-loop controller

Used in AutonoVi and countless applications

66



Control: PID Tuning

Rules of thumb for tuning a PID controller:
 https://upload.wikimedia.org/wikipedia/commons/3/33/PID_Compensation_Animated.gif

67

https://upload.wikimedia.org/wikipedia/commons/3/33/PID_Compensation_Animated.gif


Control: PID Tuning

Ziegler–Nichols Tuning

Tune Kp until the control loop begins to oscillate

Called Ultimate control point (Ku)

Ku and oscillation period Tu used to tune parameters as 

follows

68



Control: PID Examples

More examples of PID:

Cruise-control

Quad-rotor Autopilot

Mobile robot control

PID for steering + PID for speed

Spaceships

…

…

 Innumerable examples of PID control

69



Control: PID Examples

PID for QuadRotor

Pure pursuit

Target speed specified

2 layer PID

1. Mix rotors for 

vertical speed

2. Mix rotors for 

horizontal speed

70



Control: PID Examples

PID for QuadRotor

Robust to perturbation

71



Structure

Recap

Control

Core concepts

PID

MPC

Path Tracing

 Traffic-Sim

 Prediction

72



Control: MPC

Model-Predictive Controller:  control loop relying on an underlying system 

model to generate feed-forward control

Augment feedback control system to generate predicted future values 

and predicted control outputs

Non-linear systems typically linearized over small timescales of MPC

https://www.youtube.com/watch?v=oMUtYZOgsng 

Very good introduction

https://www.youtube.com/watch?v=DFqOf5wbQtc

Lecture series is helpful for MPC

73

https://www.youtube.com/watch?v=DFqOf5wbQtc
https://www.youtube.com/watch?v=DFqOf5wbQtc


Control: MPC

MPC is very useful when process model is available

Reduces overshoot substantially

Using cached table of input responses, optimization can be done quickly

MPC uses in automotive context:

Traction control [Borelli 2006]

Braking control [Falcone 2007]

Steering [Falcone 2007]

Lane-keeping [Liu 2015]

74



Structure

Recap

Control

Core concepts

PID

MPC

 Path Tracking

 Traffic-Sim

 Prediction

75



Control: Path tracking with controllers

Given a path computed by the motion planner, we use controls to follow or 

“achieve” the path

Many methods for path tracking:

Pure-pursuit

AutonoVi (Arcs) 

Kinematic Bicycle

Model-Predictive Control

76



Control: Path tracking with controllers

Pure-pursuit

Given a geometric path, track a point ahead of the vehicle according to a 

fixed lookahead (can be a function of speed)

https://www.youtube.com/watch?v=qG70QJJ8Qz8

https://www.youtube.com/watch?v=vlyTthJugRQ

Advantages: simple, robust to perturbation

Disadvantages: Corner-cutting, oscillation for non-holonomic robots

77

https://www.youtube.com/watch?v=qG70QJJ8Qz8
https://www.youtube.com/watch?v=vlyTthJugRQ


Control: Path tracking with controllers

AutonoVi

2nd order pure-pursuit PID 

Vehicle position + 2 points ahead on center of lane, trace arc between 

them

Advantages: simple, robust to perturbation, can represent kinematic limits in 

computed curves

Disadvantages: oscillation, prone to wide-turns, curvature prone to large 

shifts

78



Control: Path tracking with controllers

AutonoVi

79



Control: Path tracking with controllers

AutonoVi

80



Control: Path tracking with controllers

AutonoVi

NOTE: controllers have been demonstrated using arbitrary degree 

polynomials from N points on the path

Trade-offs in computational speed, robustness to perturbation, 

look-ahead computation

81



Control: Path tracking with controllers

Kinematic Car [De Luca 1998]

Attempts to simultaneously minimize heading error and cross-track error 

(distance to reference point on path)

Heading measured as path tangent orientation

82



Control: Path tracking with controllers

Kinematic Car [De Luca 1998]

Rewrite kinematics in “path coordinates”

Goal becomes maximizing ሶ𝑠 while minimizing

ሶ𝑒𝑟𝑎 and ሶΘ𝑒

83

De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like 

robot, 171–253. http://doi.org/10.1007/BFb0036073



Control: Path tracking with controllers

Model-predictive

Given a model, i.e. kinematic car, perform repeated optimization over 

future states to determine optimal control

Advantages:

Robust to disturbance, reduces oversteer, requires model

Disadvantages:

Computationally expensive, model mismatch exacerbates errors

 In my experience: a bad model in MPC performs worse than PID!

https://www.youtube.com/watch?v=C5UILYChPAc

84



Control: Path tracking with controllers

Model-predictive

Examples:

https://youtu.be/Bk7ES3Qd53s

https://youtu.be/C5UILYChPAc

https://youtu.be/5-hvtxeZNbo

Code at: https://github.com/parilo/CarND-MPC-Project

85

https://youtu.be/Bk7ES3Qd53s
https://youtu.be/C5UILYChPAc
https://youtu.be/5-hvtxeZNbo
https://github.com/parilo/CarND-MPC-Project


Structure

Recap

Control

 Traffic-Sim

MATSim

 Sumo

Hybrid Simulation

 Prediction

86



Traffic-Sim: Rationale

Understand infrastructure

Evaluate efficiency of proposed changes to roads

Evaluate congestion points, failures, and improvements for existing roads

Test traffic control algorithms

87



Traffic-Sim: Methods

Agent-based:

Macroscopic: agents represented without physics or kinematics

Roads treated as edges in directed graph

Many agents supported, limited interactions

Microscopic: agents represented with kinematics or physics

Roads modelled with physical dimensions

Few agents supported, interactions can be modelled dynamically

88



Traffic-Sim: Methods

Flow-based:

Agents not explicitly represented

Flow computed over network, system evolves as “fluid” simulation

89



Structure

Recap

Control

 Traffic-Sim

MATSim

 Sumo

Hybrid Simulation

 Prediction

90



Traffic-Sim: MATSim

Agent-based, Macroscopic simulation

Supports millions of vehicles
 https://vimeo.com/124704874

 https://youtu.be/VowP4f9ntCA?t=42s

 https://youtu.be/VowP4f9ntCA?t=5m28s

 https://youtu.be/o60A4r6sSsE?list=PLLGIZCXnKbU6-9vy_rKZ6gW7E_ra42hfX

91

https://vimeo.com/124704874
https://youtu.be/VowP4f9ntCA?t=42s
https://youtu.be/VowP4f9ntCA?t=5m28s
https://youtu.be/o60A4r6sSsE?list=PLLGIZCXnKbU6-9vy_rKZ6gW7E_ra42hfX


Traffic-Sim: MATSim

Features:

Millions of agents

Route import from loop detectors / traffic data

OpenStreetmap Import

Benefits:

Macro-scale modelling replicates usage data gathered over long periods

Simulation of alternate routes and large time-scales simply

Evaluate macro changes: for example, starting school 30m later

92



Structure

Recap

Control

 Traffic-Sim

MATSim

 SUMO

Hybrid Simulation

 Prediction

93



Traffic-Sim: SUMO

Agent-based, Microscopic simulation

Allows for modeling lane configuration, route-planning, vehicle size and 

shapes, preliminary pedestrians

Online control and modification of network
 https://youtu.be/KgPSREMmA_0

 https://youtu.be/a52U6CQQRcw?t=24s

 https://youtu.be/qewufs0Xsq0

94

https://youtu.be/KgPSREMmA_0
https://youtu.be/a52U6CQQRcw?t=24s
https://youtu.be/qewufs0Xsq0


Traffic-Sim: SUMO

Notable Features:

OpenStreetmap Import, automatic processing of lane connectivity

Control and physics free

Multiple driver models, “person level” transport options

Benefits:

Allows detailed testing of traffic-lights and intersections

Widely used for V2X communication research

95



Structure

Recap

Control

 Traffic-Sim

MATSim

SUMO

Hybrid Simulation

 Prediction

96



Traffic-Sim: Hybrid & Flow Models

Non-agent based models

Treat traffic as flow model, like liquid

Continuum formulation evolves road network

Allows for immense networks, but limits the ability to represent agentive 

phenomena

97



Traffic-Sim: Hybrid & Flow Models

98



Traffic-Sim: Hybrid & Flow Models

Hybrid models

“Best of both worlds”

continuum evolution for “distant” traffic phenomena

Agent-based simulation for nearby vehicles

Captures driver behavior in micro-scale and accurately models aggregate 

information
 https://www.youtube.com/watch?v=eEnGFxfN2tE

 see me after class for more papers

99

https://www.youtube.com/watch?v=eEnGFxfN2tE


Structure

Recap

Control

 Traffic-Sim

MATSim

SUMO

Hybrid Simulation

 Prediction

100



Traffic-Sim: Recent Applications

Safer intersections:

Geometric analysis performed to determine intersection danger

Design intersections which optimize flow & limit intersection points

101

8 collision points32 collision points 18 collision points?

https://www.citylab.com/solutions/2013/01/could-these-crazy-intersections-make-us-

safer/4467/?utm_source=SFFB

good article

https://www.citylab.com/solutions/2013/01/could-these-crazy-intersections-make-us-safer/4467/?utm_source=SFFB


Traffic-Sim: Recent Applications

Jughandle:

Turns from minor road executed

at special “handle”
 https://vimeo.com/58011852

102

https://vimeo.com/58011852


Traffic-Sim: Recent Applications

Superstreet:

Minor road NOT ALLOWED

to cross major road
 https://vimeo.com/57973069

103

https://vimeo.com/57973069


Traffic-Sim: Recent Applications

Diverging Diamond:

Minor road crosses in X pattern

Allows continuous flow in 2 directions
 https://vimeo.com/57972903

104

https://vimeo.com/57972903


Traffic-Sim: Recent Applications

Continuous Flow:

Left turns pre-cross oncoming lanes

 I grew up with one of these
 https://vimeo.com/57973241

 https://vimeo.com/57973040

105

https://vimeo.com/57973241
https://vimeo.com/57973040


Traffic-Sim: Recent Applications

What should traffic lights look like for AVs?

Are they needed at all?

How do we optimize for mixed AV and non-AV traffic?
 https://vimeo.com/37751380

Great resources at https://goo.gl/3YUY2o

106

https://vimeo.com/37751380
https://goo.gl/3YUY2o


Structure

Recap

Control

 Traffic-Sim

 Prediction

107



Limitations in Planning

Most autonomous navigation algorithms

Defensive

Opaque

Do not consider “interactions” with other participants

Assume a very simple model for estimating movement of other cars

Drivers have a tendency to rear end self-driving cars on the road [ Consumer 

Affairs]

19 such crashes out of 285 Waymo vehicles in CA in 2017

108



Structure

 Interaction-based planning

Formal framework for 2-way interactions

Probabilistic reasoning for multi-vehicle interactions

109



Formal Framework for 2-way interactions

 Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. Planning for 

Autonomous Cars that Leverages Effects on Human Actions. In 

Proceedings of the Robotics: Science and Systems Conference (RSS), June 2016.

Our key insight is that other drivers do not operate in isolation:

 an autonomous car’s actions will actually have effects on what other 

drivers will do. 

Leveraging these effects during planning will generate behaviors for 

autonomous cars that are more efficient and communicative.

110



Formal Framework for 2-way interactions

We model the interaction between an autonomous car and a human driver as 

a dynamical system, in which the robot’s actions have immediate 

consequences on the state of the car, but also on human actions. 

111



Formal Framework for 2-way interactions

Let x represent the state of the system, which includes positions and 

velocities of the human and autonomous robot.

Effect of robot controls: 

Effect of human actions:  

Overall dynamics of the system: 

112



Formal Framework for 2-way interactions

Formulate choosing robot controls as a reward maximization problem

Reward function of robot

Reward function depends on uH

MPC used at every iteration

Let x^0 be the current state

Reward over MPC time horizon t is : 

113



Formal Framework for 2-way interactions

At every iteration, the robot needs to find the uR that maximizes this reward:

 is what the human would do over the next N steps if the 

robot were to execute uR .

Typical solutions assume that the human will maintain current velocity

 Instead they assume that humans would maximize their own reward 

function.

114



Formal Framework for 2-way interactions

Human driver reward

Use Inverse Reinforcement Learning (IRL) over driver demonstrations in 

simulation.

Assume a simple parameterization of human reward

Given a human reward function

Solve the optimization problem using quasi-Newton methods like L-

BFGS

115



Experiments

Assume a simple dynamics model of the car.

3 Scenarios

Make human slow down

Make human change lanes

Make human go first through intersection

 In each case, hand engineer the robot reward function achieve the desired 

effect on human behavior

116



Experiments: Make human slow down

The robot plans to move in front of the person, expecting that this will make 

them slow down.

Achieved by augmenting the robot’s reward with the negative of the square 

of the human velocity.

117



Experiments: Make human change lanes

The robot plans to purposefully occupy two lanes, expecting this will make 

the human move around it by using the unoccupied lane.

Achieved by augmenting the robot’s reward with the lateral position of the 

human

118



Experiments: Make human cross intersection first

The robot plans to purposefully back up slightly, expecting this will make 

the human cross first.

Achieved by augmenting the robot’s reward with a feature based on the 

position of the human car relative to the middle of the intersection.

Communication behavior emerges naturally out of reward optimization.

119



Structure

 Interaction-based planning

Formal framework for 2-way interactions

Probabilistic reasoning for multi-vehicle interactions

120



Behavior Prediction

 Galceran, E., Cunningham, A. G., Eustice, R. M., & Olson, E. (2017). Multipolicy

decision-making for autonomous driving via changepoint-based 

behavior prediction: Theory and experiment. Autonomous Robots, 1-16.

Choose ego-vehicle actions that maximize a reward function over time 

within a dynamic, uncertain environment with tightly coupled inter-actions 

between multiple agents.

121



Behavior Prediction

Assume a set of a priori known policies

Go straight, change lanes, merge left, merge right etc

Leverage Bayesian change-point detection to estimate the policy that a 

given vehicle was executing at each point in its history of actions.

Given current policy, infer the likelihood of actions or intentions.

Statistical test for detecting anomalous behaviors.

122



Behavior Prediction

123

Bayesian change-point detection over 30 s windows



Multi-policy decision making

Draw set of sample policies over distribution for neighbor vehicles

For each sample set

Simulate other vehicles forward

Choose a policy for ego vehicle that maximizes reward in this 

instance

Track best reward

Choose policy for ego vehicle with the best reward

124



Approach

125



Conclusion

Proof of concept tests in real world and simulation

Good real world results in “offline” behavior prediction

Limitations

No guarantees in decision making

A very coarse approximation of POMDP

Decision making is slow

2-4 neighbors with small set of policy samples

Anomalous detection does not influence decision making

126



Questions?

127



128



129


