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 Homework 2 due:

 11:59 PM October 30th

 Homework 3:

 Not today! But this week.

 Project Updates:

 Remember to work consistently on projects

 It WILL sneak up on you

 AutonoVi Updates:

 Git setup

 If you need access, please see me after class
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University of North Carolina at Chapel Hill

Autonomous vehicle: a motor vehicle that uses artificial intelligence, 

sensors and global positioning system coordinates to drive itself without the 

active intervention of a human operator

Focus of enormous investment [$1b+ in 2015]
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Tesla

Waymo

Nutonomy

Autonomous Driving



Autonomous Driving: Levels of Autonomy

 0: Standard Car

 1:  Assist in some part of driving

 Cruise control

 2: Perform some part of driving

 Adaptive CC + lane keeping

 3: Self-driving under ideal conditions

 Human must remain fully aware

 4: Self-driving under near-ideal conditions

 Human need not remain constantly aware

 5: Outperforms human in all circumstances
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Autonomous Driving: Main Components
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Autonomous Driving: Perception using LIDAR

Light Detection and Ranging

 Illuminate target using pulsed laser lights, and measure reflected pulses 

using a sensor

8



Autonomous Driving: Perception using LIDAR

LIDAR in practice

Velodyne 64HD lidar

https://www.youtube.com/watch?v=nXlqv_k4P8Q

9

https://www.youtube.com/watch?v=nXlqv_k4P8Q


Autonomous Driving: Perception using Cameras

Camera based vision

Road detection

Lane marking detection

Road surface detection

On-road object detection
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Autonomous Driving: Perception using Cameras

Sensing Challenges

Sensor Uncertainty

Sensor Configuration

Weather / Environment
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Autonomous Driving: Vehicle Localization

Determining the pose of the ego vehicle and measuring its own motion

Fusing data

Satellite-based navigation system

 Inertial navigation system

Map aided localization

SLAM
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Autonomous Driving: State Space

“The set of attribute values describing the condition of an autonomous 

vehicle at an instance in time and at a particular place during its motion is 

termed the ‘state’ of the vehicle at that moment”

Typically a vector with position, orientation, linear velocity, angular 

velocity

State Space: set of all states the vehicle could occupy
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Autonomous Driving: State Space

Recall Pedestrian Planning:

Roadmap is essential a graph 

of potential agent states
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Autonomous Driving: State Space

Examples:

2D space with blinker booleans

 Ԧ𝑝, 𝜃, Ԧ𝑣, 𝜔, 𝑏𝑙𝑙 , 𝑏𝑙𝑟
State contains everything we need to describe the 

robot’s current configuration!

Neglect some state variables when planning
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Autonomous Driving: Holonomicity

Cars are “non-holonomic” robots

Typically 5 values describing physical

(2 Cartesian coordinates, orientation, linear 

speed, angular speed)

2 “kinematic” constraints

Can only move forward or backward, tangent 

to body direction

Can only steer in bounded radius
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Kinematic Constraints

Kinematics of Motion

“the branch of mechanics that deals with pure motion, 

without reference to the masses or forces involved in it”

Equations describing conversion between control and 

motion

Control: inputs to the system

In vehicle: steering and throttle

Also referred to as “Action” in literature
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Autonomous Driving: Holonomicity

kinematic and dynamic constraints can be considered 

“rules” governing the state evolution function

For state 𝑠𝑡 ∈ 𝑆, control input 𝑢𝑡 ∈ U, time 𝑡 ∈ 𝑇:

F(st, u𝑡 , Δ𝑡) → st+1
Ex:

 A car cannot turn in place. No amount of steering 

will accomplish this

A Roomba can turn in place
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Kinematic Constraints

Kinematic models of a car

Single-track Bicycle (or simple car model)

3-DOF configuration: (x,y,θ)

2-DOF control: steering (φ), speed (v)

Full state: (x,y,θ,v, φ,L)

Equations of motion:

 ሶ𝑝𝑥 = 𝑣 ∗ 𝑐𝑜𝑠 𝜃 ሶ𝑝𝑦 = 𝑣 ∗ 𝑠𝑖𝑛 𝜃

ሶ𝜃 =
tan(𝜙)

𝐿
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Kinematic Constraints

Single-track bicycle example

 [github link to my project]
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Dynamic Constraints

“the branch of mechanics concerned with the motion 

of bodies under the action of forces.”

Tires subject to lateral and longitudinal force during 

steering / accelerating

 If lateral force exceeds friction force

Fishtailing

 If longitudinal force exceeds friction force

Peel out / skid
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Dynamic Constraints

No longer directly control acceleration and steering

Apply engine force

Apply steering force

Diminishing returns on each force at limits of control
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Dynamic Constraints

Dynamic Bicycle model with linear tires

No load transfer between tires

Larger state space including tire stiffness
 𝐹𝑥 longitudinal force

 𝐹𝑦 lateral force

 m mass

 𝐼𝑧 yaw moment of intertia
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Dynamic Constraints

Dynamic Bicycle model with linear tires

𝐹𝑦 lateral force on tire

𝐹𝑥 longitudinal force on tire

𝛼𝑓 “slip angle” of tire

𝛿 steering angle
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Dynamic Constraints

Models increase in complexity as needed for 

performance tuning

Aerodynamic drag force

Maximum engine torque

Each layer of dynamics:

 Increases accuracy of model

 Increases computational complexity
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Autonomous Driving: Main Components

31

Planning

Making purposeful decisions in order to achieve the robot’s higher order 

goals



Motion Planning: term used in robotics for the process of breaking down a 

desired movement task into discrete motions that satisfy movement 

constraints and possibly optimize some aspect of the movement
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Autonomous Driving: Planning

Compare to Pedestrian Techniques:

Route Planning: road selection (global)

Path Planning: preferred lanes (global)

Maneuver-search: high level maneuvers 

(local)

Trajectory planning: Lowest level of 

planning (local)
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Mission Planner (Route Planning)

 Pendleton: “considers high level objectives, such as assignment of pickup/dropoff

tasks and which roads should be taken to achieve the task”

 Typical approaches:

 RNG (Road-network Graph)

A*

Dijkstras

 Scale poorly!
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Mission Planner (Route Planning)

Massive-scale algorithms needed

for routing

 18 million vertices, 42.5 million edges

 Partial Western Europe dataset
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Behavior Planner

 Finite State Machines

Set of “states” and transition functions 

between them

Separate from configuration state
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Behavior Planner

 FSMs limited in some cases

 What to do in unseen situations?

 Real-time decision making [Furda et al 2011]
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Motion Planner

Generally two stages:

Path planner - Computes the geometric representation of the path to be 

followed. I.e. the curve, spline, track, line, etc. we are following

Trajectory Planner / Path tracker - Computes the specific physical targets 

for following the path. I.e. velocity, acceleration, heading, steering, etc.
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Motion Planner

 Basic overview

 Complete planning - continuous plan in configuration space

Exponential in dimensions of c-space (curse of dimensionality)

"Complete"

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

 Sample-Based planning:
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning - discrete planning over an exact decomposition of the 

configuration space

Exponential in dimensions of c-space discretization (curse of dimensionality)

"resolution complete"

 Sample-Based planning
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Motion Planner

 Basic overview

 Complete planning

 Combinatorial Planning

 Sample-Based planning - Sample in space to find controls / positions which are 

collision free and linked

Probabilistically complete

Some “probabilistically optimal”

NOT exponential in configuration space
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Motion Planner: Combinatorial Planners

Driving Corridors:

Decompose lanes into polygonal lanelets

Represent obstacles as polygonal bounding 

boxes or overlapping discs

Adjust lanelets to obstacle

constraints

42



Motion Planner: Combinatorial Planners

Darpa Urban Challenge:

BOSS: kinodynamic reachable set
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Maneuver Planner: Sample-based Planners

Sample-based Planning specifically for cars:

Dynamics computation

 Inevitable collision states

“Space-time planning approaches”

Pendleton: “Incorporating differential constraints into state-sampling 

planners is still a challenging matter, and requires a steering function to 

draw an optimal path between two given states which obeys control 

constraints (if such a path exists), as well as efficient querying methods to 

tell whether a sampled state is reachable from a potential parent state"
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Maneuver Planner: Sample-based Planners

RRT:

Given at-least one initial configuration in free-space and a goal 

configuration

Sample a point 𝑝 in configuration space, determine if it is collision 

free

If so, find nearest node 𝑛 to the point, move some 𝛿 towards the point

If  𝑛 to 𝑛 + 𝛿 is CLEAR, connect to the tree
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Maneuver Planner: Sample-based Planners

State-lattice planners

Generate set of potential future states through solving boundary-value 

problem

Generate connected “lattice” of potential future states expanding in time 

and space
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Maneuver Planner: Sample-based Planners

State-lattice planners

Ex: Configurations in space
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Maneuver Planner: Obstacle Representation

RVOs: Reciprocal-velocity Obstacles

Constructs mutually exclusive 

velocity set choices for multiple 

robots

https://youtu.be/1Fn3Mz6f5xA?t=1m

24s
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Autonomous Driving: Main Components

50

Control

Executing the planned maneuvers accounting for error / uncertainty

Commands sent to

actuators



Control: Core Concepts

Automatic control in engineering and technology is a wide generic term 

covering the application of mechanisms to the operation and regulation of 

processes without continuous direct human intervention

Open-loop control: Control input delivered independent of measurements

Closed-loop control: Control input determined by system outputs

51



Control: Core Concepts

Open-loop control examples

Timers: 

Electronic timing switches

Clothes Dryer

Simple throttle (non-electronic)

Motorbikes, go-karts

Stove-top gas

Sinks / simple valves

Hot water / cold water
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Control: Core Concepts

Closed-loop control examples

Thermostat:

Engages air-conditioning depending on temperature

Oven:

Heating element controlled by temperature

Cruise-control:

Throttle controlled by current speed / acceleration

Used EXTENSIVELY in plant control (i.e. chemical, 

energy)
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Control: Core Concepts

Process Variable (PV): The system output we wish to control

Set Point (SP): Target value of the process Variable

Control Output (CO): Output of the controller (input to the system)

Error (E): Difference between SP and PV
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https://www.dataforth.com/introduction-to-pid-control.aspx



Control: Core Concepts

Example: Water Plant Thermal Control

Water kept at constant temperature by gas heater

 If level rises, gas reduced to stabilize

PV: Temperature of water

SP: Desired Temperature

CO: Level of gas applied to burner
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Control: Core Concepts

Can we replace the manual control with automatic controller?

 ->

Of course, we can!

56



Structure

Recap

Control

Core concepts

 PID

MPC

 Path Tracking

 Traffic-Sim

 Prediction

57



Control: PID

Proportional-Integral-Derivative Controller:  control loop feedback 

mechanism widely used in industrial control systems and a variety of other 

applications requiring continuously modulated control. 

Continuously calculates E, applies correction based on proportional, 

integral, and derivative terms (denoted P, I, and D respectively

Proportion (P): Current error, E (typically SP – PV)

 Integral (I): integral of E (sum of errors over time)

Derivative (D): derivative of E  (typically finite difference)
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Control: PID

Proportional-Integral-Derivative Controller:  control loop feedback 

mechanism widely used in industrial control systems and a variety of other 

applications requiring continuously modulated control. 
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Control: PID

Proportion: Output controlled by error and 

Controller Gain (Kp)

Control output proportional to error

Choice of error function, but typically SP – PV

High gain: can cause oscillation

Low gain: fails to correct to Set Point 
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Control: PID

Proportion-only controller: Output controlled by 

error and Controller Gain (Kp)

Control output proportional to error

Choice of error function, but typically SP – PV

Add bias point for steady output at 0 error
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Control: PID

P-only controller

Bias controls steady output

https://sites.google.com/site/fpgaandco/pid
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Control: PID

 Integral Control: Output term controlled by 

integral of error and Integral Gain (Ki)

Corrects “steady-state” error

Requires a “time” factor for integration (Ti)

Longer time = less integral action
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Control: PID

PI Controller: Proportion and integral terms

Corrects steady-state error, converges rather than 

oscillates
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Control: PID

Derivative: Output term controlled by derivative 

of error and Derivative Gain (Kd)

Assists in rapid response to disturbance

Requires time parameter to operate
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Control: PID

PID Controller: Proportion, Integral, Derivative 

terms

Complete closed-loop controller

Used in AutonoVi and countless applications
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Control: PID Tuning

Rules of thumb for tuning a PID controller:
 https://upload.wikimedia.org/wikipedia/commons/3/33/PID_Compensation_Animated.gif
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https://upload.wikimedia.org/wikipedia/commons/3/33/PID_Compensation_Animated.gif


Control: PID Tuning

Ziegler–Nichols Tuning

Tune Kp until the control loop begins to oscillate

Called Ultimate control point (Ku)

Ku and oscillation period Tu used to tune parameters as 

follows
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Control: PID Examples

More examples of PID:

Cruise-control

Quad-rotor Autopilot

Mobile robot control

PID for steering + PID for speed

Spaceships

…

…

 Innumerable examples of PID control
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Control: PID Examples

PID for QuadRotor

Pure pursuit

Target speed specified

2 layer PID

1. Mix rotors for 

vertical speed

2. Mix rotors for 

horizontal speed
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Control: PID Examples

PID for QuadRotor

Robust to perturbation
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Control: MPC

Model-Predictive Controller:  control loop relying on an underlying system 

model to generate feed-forward control

Augment feedback control system to generate predicted future values 

and predicted control outputs

Non-linear systems typically linearized over small timescales of MPC

https://www.youtube.com/watch?v=oMUtYZOgsng 

Very good introduction

https://www.youtube.com/watch?v=DFqOf5wbQtc

Lecture series is helpful for MPC
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Control: MPC

MPC is very useful when process model is available

Reduces overshoot substantially

Using cached table of input responses, optimization can be done quickly

MPC uses in automotive context:

Traction control [Borelli 2006]

Braking control [Falcone 2007]

Steering [Falcone 2007]

Lane-keeping [Liu 2015]
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Control: Path tracking with controllers

Given a path computed by the motion planner, we use controls to follow or 

“achieve” the path

Many methods for path tracking:

Pure-pursuit

AutonoVi (Arcs) 

Kinematic Bicycle

Model-Predictive Control
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Control: Path tracking with controllers

Pure-pursuit

Given a geometric path, track a point ahead of the vehicle according to a 

fixed lookahead (can be a function of speed)

https://www.youtube.com/watch?v=qG70QJJ8Qz8

https://www.youtube.com/watch?v=vlyTthJugRQ

Advantages: simple, robust to perturbation

Disadvantages: Corner-cutting, oscillation for non-holonomic robots
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Control: Path tracking with controllers

AutonoVi

2nd order pure-pursuit PID 

Vehicle position + 2 points ahead on center of lane, trace arc between 

them

Advantages: simple, robust to perturbation, can represent kinematic limits in 

computed curves

Disadvantages: oscillation, prone to wide-turns, curvature prone to large 

shifts
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Control: Path tracking with controllers

AutonoVi
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Control: Path tracking with controllers

AutonoVi
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Control: Path tracking with controllers

AutonoVi

NOTE: controllers have been demonstrated using arbitrary degree 

polynomials from N points on the path

Trade-offs in computational speed, robustness to perturbation, 

look-ahead computation
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Control: Path tracking with controllers

Kinematic Car [De Luca 1998]

Attempts to simultaneously minimize heading error and cross-track error 

(distance to reference point on path)

Heading measured as path tangent orientation
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Control: Path tracking with controllers

Kinematic Car [De Luca 1998]

Rewrite kinematics in “path coordinates”

Goal becomes maximizing ሶ𝑠 while minimizing

ሶ𝑒𝑟𝑎 and ሶΘ𝑒
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De Luca, A., Oriolo, G., & Samson, C. (1998). Feedback control of a nonholonomic car-like 

robot, 171–253. http://doi.org/10.1007/BFb0036073



Control: Path tracking with controllers

Model-predictive

Given a model, i.e. kinematic car, perform repeated optimization over 

future states to determine optimal control

Advantages:

Robust to disturbance, reduces oversteer, requires model

Disadvantages:

Computationally expensive, model mismatch exacerbates errors

 In my experience: a bad model in MPC performs worse than PID!

https://www.youtube.com/watch?v=C5UILYChPAc

84



Control: Path tracking with controllers

Model-predictive

Examples:

https://youtu.be/Bk7ES3Qd53s

https://youtu.be/C5UILYChPAc

https://youtu.be/5-hvtxeZNbo

Code at: https://github.com/parilo/CarND-MPC-Project
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Traffic-Sim: Rationale

Understand infrastructure

Evaluate efficiency of proposed changes to roads

Evaluate congestion points, failures, and improvements for existing roads

Test traffic control algorithms
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Traffic-Sim: Methods

Agent-based:

Macroscopic: agents represented without physics or kinematics

Roads treated as edges in directed graph

Many agents supported, limited interactions

Microscopic: agents represented with kinematics or physics

Roads modelled with physical dimensions

Few agents supported, interactions can be modelled dynamically
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Traffic-Sim: Methods

Flow-based:

Agents not explicitly represented

Flow computed over network, system evolves as “fluid” simulation
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Traffic-Sim: MATSim

Agent-based, Macroscopic simulation

Supports millions of vehicles
 https://vimeo.com/124704874

 https://youtu.be/VowP4f9ntCA?t=42s

 https://youtu.be/VowP4f9ntCA?t=5m28s

 https://youtu.be/o60A4r6sSsE?list=PLLGIZCXnKbU6-9vy_rKZ6gW7E_ra42hfX
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https://vimeo.com/124704874
https://youtu.be/VowP4f9ntCA?t=42s
https://youtu.be/VowP4f9ntCA?t=5m28s
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Traffic-Sim: MATSim

Features:

Millions of agents

Route import from loop detectors / traffic data

OpenStreetmap Import

Benefits:

Macro-scale modelling replicates usage data gathered over long periods

Simulation of alternate routes and large time-scales simply

Evaluate macro changes: for example, starting school 30m later

92



Structure

Recap

Control

 Traffic-Sim

MATSim

 SUMO

Hybrid Simulation

 Prediction

93



Traffic-Sim: SUMO

Agent-based, Microscopic simulation

Allows for modeling lane configuration, route-planning, vehicle size and 

shapes, preliminary pedestrians

Online control and modification of network
 https://youtu.be/KgPSREMmA_0

 https://youtu.be/a52U6CQQRcw?t=24s

 https://youtu.be/qewufs0Xsq0
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Traffic-Sim: SUMO

Notable Features:

OpenStreetmap Import, automatic processing of lane connectivity

Control and physics free

Multiple driver models, “person level” transport options

Benefits:

Allows detailed testing of traffic-lights and intersections

Widely used for V2X communication research
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Traffic-Sim: Hybrid & Flow Models

Non-agent based models

Treat traffic as flow model, like liquid

Continuum formulation evolves road network

Allows for immense networks, but limits the ability to represent agentive 

phenomena
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Traffic-Sim: Hybrid & Flow Models
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Traffic-Sim: Hybrid & Flow Models

Hybrid models

“Best of both worlds”

continuum evolution for “distant” traffic phenomena

Agent-based simulation for nearby vehicles

Captures driver behavior in micro-scale and accurately models aggregate 

information
 https://www.youtube.com/watch?v=eEnGFxfN2tE

 see me after class for more papers
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Traffic-Sim: Recent Applications

Safer intersections:

Geometric analysis performed to determine intersection danger

Design intersections which optimize flow & limit intersection points

101

8 collision points32 collision points 18 collision points?

https://www.citylab.com/solutions/2013/01/could-these-crazy-intersections-make-us-

safer/4467/?utm_source=SFFB

good article

https://www.citylab.com/solutions/2013/01/could-these-crazy-intersections-make-us-safer/4467/?utm_source=SFFB


Traffic-Sim: Recent Applications

Jughandle:

Turns from minor road executed

at special “handle”
 https://vimeo.com/58011852
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https://vimeo.com/58011852


Traffic-Sim: Recent Applications

Superstreet:

Minor road NOT ALLOWED

to cross major road
 https://vimeo.com/57973069
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https://vimeo.com/57973069


Traffic-Sim: Recent Applications

Diverging Diamond:

Minor road crosses in X pattern

Allows continuous flow in 2 directions
 https://vimeo.com/57972903
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https://vimeo.com/57972903


Traffic-Sim: Recent Applications

Continuous Flow:

Left turns pre-cross oncoming lanes

 I grew up with one of these
 https://vimeo.com/57973241

 https://vimeo.com/57973040
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https://vimeo.com/57973241
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Traffic-Sim: Recent Applications

What should traffic lights look like for AVs?

Are they needed at all?

How do we optimize for mixed AV and non-AV traffic?
 https://vimeo.com/37751380

Great resources at https://goo.gl/3YUY2o
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Limitations in Planning

Most autonomous navigation algorithms

Defensive

Opaque

Do not consider “interactions” with other participants

Assume a very simple model for estimating movement of other cars

Drivers have a tendency to rear end self-driving cars on the road [ Consumer 

Affairs]

19 such crashes out of 285 Waymo vehicles in CA in 2017
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Structure

 Interaction-based planning

Formal framework for 2-way interactions

Probabilistic reasoning for multi-vehicle interactions
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Formal Framework for 2-way interactions

 Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. Planning for 

Autonomous Cars that Leverages Effects on Human Actions. In 

Proceedings of the Robotics: Science and Systems Conference (RSS), June 2016.

Our key insight is that other drivers do not operate in isolation:

 an autonomous car’s actions will actually have effects on what other 

drivers will do. 

Leveraging these effects during planning will generate behaviors for 

autonomous cars that are more efficient and communicative.
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Formal Framework for 2-way interactions

We model the interaction between an autonomous car and a human driver as 

a dynamical system, in which the robot’s actions have immediate 

consequences on the state of the car, but also on human actions. 
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Formal Framework for 2-way interactions

Let x represent the state of the system, which includes positions and 

velocities of the human and autonomous robot.

Effect of robot controls: 

Effect of human actions:  

Overall dynamics of the system: 
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Formal Framework for 2-way interactions

Formulate choosing robot controls as a reward maximization problem

Reward function of robot

Reward function depends on uH

MPC used at every iteration

Let x^0 be the current state

Reward over MPC time horizon t is : 
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Formal Framework for 2-way interactions

At every iteration, the robot needs to find the uR that maximizes this reward:

 is what the human would do over the next N steps if the 

robot were to execute uR .

Typical solutions assume that the human will maintain current velocity

 Instead they assume that humans would maximize their own reward 

function.
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Formal Framework for 2-way interactions

Human driver reward

Use Inverse Reinforcement Learning (IRL) over driver demonstrations in 

simulation.

Assume a simple parameterization of human reward

Given a human reward function

Solve the optimization problem using quasi-Newton methods like L-

BFGS

115



Experiments

Assume a simple dynamics model of the car.

3 Scenarios

Make human slow down

Make human change lanes

Make human go first through intersection

 In each case, hand engineer the robot reward function achieve the desired 

effect on human behavior
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Experiments: Make human slow down

The robot plans to move in front of the person, expecting that this will make 

them slow down.

Achieved by augmenting the robot’s reward with the negative of the square 

of the human velocity.
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Experiments: Make human change lanes

The robot plans to purposefully occupy two lanes, expecting this will make 

the human move around it by using the unoccupied lane.

Achieved by augmenting the robot’s reward with the lateral position of the 

human
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Experiments: Make human cross intersection first

The robot plans to purposefully back up slightly, expecting this will make 

the human cross first.

Achieved by augmenting the robot’s reward with a feature based on the 

position of the human car relative to the middle of the intersection.

Communication behavior emerges naturally out of reward optimization.
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Structure

 Interaction-based planning

Formal framework for 2-way interactions

Probabilistic reasoning for multi-vehicle interactions
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Behavior Prediction

 Galceran, E., Cunningham, A. G., Eustice, R. M., & Olson, E. (2017). Multipolicy

decision-making for autonomous driving via changepoint-based 

behavior prediction: Theory and experiment. Autonomous Robots, 1-16.

Choose ego-vehicle actions that maximize a reward function over time 

within a dynamic, uncertain environment with tightly coupled inter-actions 

between multiple agents.
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Behavior Prediction

Assume a set of a priori known policies

Go straight, change lanes, merge left, merge right etc

Leverage Bayesian change-point detection to estimate the policy that a 

given vehicle was executing at each point in its history of actions.

Given current policy, infer the likelihood of actions or intentions.

Statistical test for detecting anomalous behaviors.
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Behavior Prediction

123

Bayesian change-point detection over 30 s windows



Multi-policy decision making

Draw set of sample policies over distribution for neighbor vehicles

For each sample set

Simulate other vehicles forward

Choose a policy for ego vehicle that maximizes reward in this 

instance

Track best reward

Choose policy for ego vehicle with the best reward
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Approach
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Conclusion

Proof of concept tests in real world and simulation

Good real world results in “offline” behavior prediction

Limitations

No guarantees in decision making

A very coarse approximation of POMDP

Decision making is slow

2-4 neighbors with small set of policy samples

Anomalous detection does not influence decision making
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Questions?
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