Programming Assignment 1

COMP 575/770 Spring 2016
Due: February 15, 2016

Instructions

e Please work on the assignment on your own. It is okay to discuss the assignment with other
students, but please write your own code independently. If you use code from the Internet or any
other source, please acknowledge the source.

e You are free to use any programming language you are comfortable with, but try not to use anything
too obscure. C/C++, C#, Objective-C, Java, and Python are common choices.

e You will need to use a fairly small amount of OpenGL and GLUT to get your image on-screen. A
comprehensive tutorial for GLUT is available at:
http://www.lighthouse3d.com/tutorials/glut-tutorial /

This tutorial is Windows-oriented.

A tutorial on starting an OpenGL project in Visual Studio is here:
http://mycodelog.com/2015/10/08 /opengl-freeglut-in-visual-studio-2015/

You can find out about compiling GLUT code under OSX at:
http://blog.onesadcookie.com /2007 /12 /xcodeglut-tutorial.html

and under Linux at:

http://www.its.monash.edu.au/staff /systems/linux /technical /gluthome.html

A brief tutorial for Python is also available at:
http://code.activestate.com/recipes/325391-open-a-glut-window-and-draw-a-sphere-using-pythono/
Tutorial for OpenGL
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-1-opening-a-window/
A function that would be useful is :
https://www.opengl.org/sdk/docs/man2/xhtml/glDrawPixels.xml

e Submit your source code via email along with a README file containing compilation instructions,
additional required libraries (if any), and a short description of what the different parts of your
program do.

Email Ids: Tanmay (tanmay@cs.unc.edu), Michael (mkcolema@cs.unc.edu)

Objective The goal of this assignment is to write a simple ray tracer which can render a simple scene
consisting of a plane and three spheres, and shade them using the Phong model. For reference, some
views of the scene are shown below.

1. Ray Intersection
The scene consists of the following four objects:
(a)
(b) Sphere S;, with center at (—4,0,—7) and radius 1.
(¢) Sphere So, with center at (0,0, —7) and radius 2.
(d) Sphere S3, with center at (4,0,—7) and radius 1.

Plane P, with equation y = —2.

Assume a perspective camera, with eye point at e = (0,0, 0), and orientation given by u = (1,0, 0),
v =(0,1,0) and w = (0,0,1). (Note that the camera is looking along the direction —w.) Assume

(a) Intersections only. (b) With shading and shadows. (c) With antialiasing.

Figure 1: Three views of the scene used for this assignment.

that the viewing region on the image plane is defined by [= —0.1, r = 0.1, b= —0.1, t = 0.1, and
d = 0.1. Also assume that the image resolution is 512 x 512 (i.e., n, = n, = 512).

Write a ray tracer which generates eye rays through the center of each pixel, and calculates the
intersection between each ray and each object in the scene, also calculating the closest intersection
(if any) for each ray. For each pixel, if the corresponding ray intersects an object, set the pixel’s
color to white; otherwise, set the pixel’s color to black. See Figure 1a for a reference image.

. Shading
Use the Phong model to shade the scene, with the following material parameters for each object:
(a) P =(0.2,0.2,0.2), kg = (1,1,1), ks = (0,0,0), with specular power 0.
(b) S = (0.2,0,0), kg = (1,0,0), ks = (0,0,0), with specular power 0.
(c) S = (0,0.2,0), kd = (0,0.5 O) = (0.5,0.5,0.5), with specular power 32.
(d) 53 ke, =(0,0,0.2), kq = (0,0,1), k (O 0,0), with specular power 0.

Note that k., k4, and ks values are specified as (red, green, blue) values. Assume a single point
light source at (—4,4, —3), emitting white light with unit intensity and no falloff.

Modify your ray tracer to store at each pixel the appropriate illumination values computed using
the Phong shading model. Also model shadows from the point light using shadow rays. Perform
gamma correction with v = 2.2. See Figure 1b for a reference image.

. Antialiasing

The image produced in the previous part of the assignment contains unsightly “jaggies” at the
boundaries of the spheres. In this part, we will remove the jaggies using antialiasing. Generate
N = 64 samples of the image within each pixel, by generating N random eye rays within each
pixel. For each pixel, apply a box filter with amplitude 1/N and support equal to the extents of the
“pixel rectangle” to estimate the pixel value. The resulting image should have significantly reduced
aliasing artifacts. See Figure 1c for a reference image.

