
1	
 	


Ray Tracing	


COMP575/COMP770	




2	
• 	


Ray tracing idea	




Ray Tracing: Example	


(from [Whitted80])	




Ray Tracing: Example	




Ray Tracing for Highly Realistic 
Images	


Volkswagen Beetle with correct shadows and (multi-)reflections on	

 curved surfaces	




Reasons for Using Ray Tracing ���
Flexible Primitive Types	


Volume visualization using multiple iso-surfaces	




7	


Ray tracing algorithm	


for each pixel {
    compute viewing ray
    intersect ray with scene
    compute illumination at visible point
    put result into image
    }



8	


Generating eye rays	

•  Use window analogy directly	




9	
• 	


Generating eye rays	


ORTHOGRAPHIC	


PERSPECTIVE	




10	


Vector math review	

•  Vectors and points	


•  Vector operations	

–  addition	

–  scalar product	


•  More products	

–  dot product	

–  cross product	


•  Bases and orthogonality	




11	
 • 	


Generating eye rays—orthographic	

•  Just need to compute the view plane point s:	


–  but where exactly is the view rectangle?	




12	
• 	


Generating eye rays—orthographic	




13	
 • 	


Generating eye rays—perspective	


•  View rectangle needs to be away from viewpoint	

•  Distance is important: “focal length” of camera	


–  still use camera frame but position view rect away from 
viewpoint	


–  ray origin always e	


–  ray direction now ���
controlled by s	




14	
• 	


Generating eye rays—perspective	

•  Compute s in the same way; just subtract dw	


–  coordinates of s are (u, v, –d)	




15	


Pixel-to-image mapping	


•  One last detail: (u, v) coords of a pixel	


j	


i	


i =
 –

.5
	


i =
 3

.5
	


j = 2.5	


j = –.5	




16	
 • 	


Ray intersection	




17	


Ray: a half line	

•  Standard representation: point p and direction d	


–  this is a parametric equation for the line	

–  lets us directly generate the points on the line	

–  if we restrict to t > 0 then we have a ray	

–  note replacing d with ad doesn’t change ray (a > 0)	




18	


Ray-sphere intersection: algebraic	

•  Condition 1: point is on ray	


•  Condition 2: point is on sphere	

–  assume unit sphere; see Shirley or notes for general	


•  Substitute:	


–  this is a quadratic equation in t	




19	
 • 	


Ray-sphere intersection: algebraic	

•  Solution for t by quadratic formula:	


–  simpler form holds when d is a unit vector���
but we won’t assume this in practice (reason later)	


–  I’ll use the unit-vector form to make the geometric interpretation	




20	
• 	


Ray-sphere intersection: geometric	




21	
• 	


Ray-box intersection	

•  Could intersect with 6 faces individually	


•  Better way: box is the intersection of 3 slabs	




22	
• 	


Ray-slab intersection	

•  2D example	


•  3D is the same!	




23	
• 	


Intersecting intersections	

•  Each intersection���

is an interval	


•  Want last���
entry point and���
first exit point	


Shirley fig. 10.16	




24	
• 	


Ray-triangle intersection	

•  Condition 1: point is on ray	


•  Condition 2: point is on plane	


•  Condition 3: point is on the inside of all three edges	


•  First solve 1&2 (ray–plane intersection)	

–  substitute and solve for t:	




25	
• 	


Ray-triangle intersection	

•  In plane, triangle is the intersection of 3 half spaces	


25	




26	
• 	


Inside-edge test	

•  Need outside vs. inside	


•  Reduce to clockwise vs. counterclockwise	

–  vector of edge to vector to x	


•  Use cross product to decide	




27	
• 	


Ray-triangle intersection	




28	
 • 	
 	


Ray-triangle intersection	

•  See book for a more efficient method based on linear systems	


–  (don’t need this for Ray 1 anyhow—but stash away for Ray 2)	




29	
 • 	
 	


Image so far	

•  With eye ray generation and sphere intersection	


Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        hitSurface, t = s.intersect(ray, 0, +inf)
        if hitSurface is not null
            image.set(ix, iy, white);
    }



30	
 • 	
 	


Intersection against many shapes	


Group.intersect (ray, tMin, tMax) {
    tBest = +inf; firstSurface = null;
    for surface in surfaceList {
        hitSurface, t = surface.intersect(ray, tMin, tBest);
        if hitSurface is not null {
            tBest = t;
            firstSurface = hitSurface;
        }
    }
return hitSurface, tBest;
}



31	
• 	


Image so far	


•  With eye ray generation and scene intersection	



for 0 <= iy < ny
    for 0 <= ix < nx {
        ray = camera.getRay(ix, iy);
        c = scene.trace(ray, 0, +inf);
        image.set(ix, iy, c);
    }

…

Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}



32	
 • 	
 	


Shading	

•  Compute light reflected toward camera	


•  Inputs:	

–  eye direction	

–  light direction ���

(for each of many lights)	

–  surface normal	

–  surface parameters ���

(color, shininess, …)	




33	
• 	


Diffuse reflection	


Top face of cube���
receives a certain ���
amount of light	


Top face of ���
60º rotated cube���

intercepts half the light	


In general, light per unit���
area is proportional to���

cos θ = l • n	




34	
• 	


Lambertian shading	


diffuse���
coefficient	


diffusely���
reflected���

light	


illumination���
from source	




35	
• 	


Lambertian shading	

•  Produces matte appearance	


[F
ol

ey
 e

t 
al

.]	




36	
 	


Diffuse shading	




37	
 • 	
 	


Image so far	

Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,�
            normal, light);
    }
    else return backgroundColor;
}

…

Surface.shade(ray, point, normal, light) {
    v = –normalize(ray.direction);
    l = normalize(light.pos – point);
    // compute shading
}



38	
 • 	
 	


Shadows	

•  Surface is only illuminated if nothing blocks its view of the light.	


•  With ray tracing it’s easy to check	

–  just intersect a ray with the scene!	




39	
• 	


Image so far	


Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos – point);
    if (shadRay not blocked) {
        v = –normalize(ray.direction);
        l = normalize(light.pos – point);
        // compute shading
    }
    return black;
}



40	
• 	


Shadow rounding errors	

•  Don’t fall victim to one of the classic blunders:	


•  What’s going on?	

–  hint: at what t does the shadow ray intersect the surface you’re shading?	




41	
• 	


Shadow rounding errors	

•  Solution: shadow rays start a tiny distance from the surface	


•  Do this by moving the start point, or by limiting the t range	




42	
 	


Multiple lights	

•  Important to fill in black shadows	


•  Just loop over lights, add contributions	


•  Ambient shading	

–  black shadows are not really right	

–  one solution: dim light at camera	

–  alternative: add a constant “ambient” color to the shading…	




43	
• 	
 	


Image so far	


shade(ray, point, normal, lights) {
    result = ambient;
    for light in lights {
        if (shadow ray not blocked) {
            result += shading contribution;
        }
    }
    return result;
}



44	
 • 	
 	


Specular shading (Blinn-Phong)	

•  Intensity depends on view direction	


–  bright near mirror configuration	




45	
 • 	
 3	


Specular shading (Blinn-Phong)	

•  Close to mirror ⇔ half vector near normal	


–  Measure “near” by dot product of unit vectors	


specular���
coefficient	


specularly���
reflected���

light	




46	
• 	


Phong model—plots	

•  Increasing n narrows the lobe	


[F
ol

ey
 e

t 
al

.]	




47	
 	
 	


Specular shading	


[F
ol

ey
 e

t 
al

.]	




48	
 • 	
 	


Diffuse + Phong shading	




49	


Ambient shading	


•  Shading that does not depend on anything	

–  add constant color to account for disregarded illumination 

and fill in black shadows	


ambient���
coefficient	


reflected���
ambient���

light	




50	
• 	


Putting it together	


•  Usually include ambient, diffuse, Phong in one model	


•  The final result is the sum over many lights	




51	
• 	


Mirror reflection	


•  Consider perfectly shiny surface	

–  there isn’t a highlight	


–  instead there’s a reflection of other objects	


•  Can render this using recursive ray tracing	

–  to find out mirror reflection color, ask what color is seen 

from surface point in reflection direction	


–  already computing reflection direction for Phong…	


•  “Glazed” material has mirror reflection and diffuse	


–  where Lm is evaluated by tracing a new ray	




52	
3	


Mirror reflection	

•  Intensity depends on view direction	


–  reflects incident light from mirror direction	




53	
 • 	


Diffuse + mirror reflection (glazed)	


(glazed material on floor)	




54	
 	
 	


Ray tracer architecture 101	

•  You want a class called Ray	


–  point and direction; evaluate(t)	

–  possible: tMin, tMax	


•  Some things can be intersected with rays	

–  individual surfaces	

–  groups of surfaces (acceleration goes here)	

–  the whole scene	

–  make these all subclasses of Surface	

–  limit the range of valid t values (e.g. shadow rays)	


•  Once you have the visible intersection, compute the color	

–  may want to separate shading code from geometry	

–  separate class: Material (each Surface holds a reference to one)	

–  its job is to compute the color	




55	
 	
 	


Architectural practicalities	

•  Return values	


–  surface intersection tends to want to return multiple values	

•  t, surface or shader, normal vector, maybe surface point	


–  in many programming languages (e.g. Java) this is a pain	

–  typical solution: an intersection record	


•  a class with fields for all these things	

•  keep track of the intersection record for the closest intersection	

•  be careful of accidental aliasing (which is very easy if you’re new to Java)	


•  Efficiency	

	

–  what objects are created for every ray? try to find a place for them 

where you can reuse them.	

–  Shadow rays can be cheaper (any intersection will do, don’t need 

closest)	

–  but: “First Get it Right, Then Make it Fast”	



