
1	

 	

Ray Tracing	

COMP575/COMP770	

2	

• 	

Ray tracing idea	

Ray Tracing: Example	

(from [Whitted80])	

Ray Tracing: Example	

Ray Tracing for Highly Realistic
Images	

Volkswagen Beetle with correct shadows and (multi-)reflections on	

 curved surfaces	

Reasons for Using Ray Tracing ���
Flexible Primitive Types	

Volume visualization using multiple iso-surfaces	

7	

Ray tracing algorithm	

for each pixel {

 compute viewing ray

 intersect ray with scene

 compute illumination at visible point

 put result into image

 }

8	

Generating eye rays	

•  Use window analogy directly	

9	

• 	

Generating eye rays	

ORTHOGRAPHIC	

PERSPECTIVE	

10	

Vector math review	

•  Vectors and points	

•  Vector operations	

–  addition	

–  scalar product	

•  More products	

–  dot product	

–  cross product	

•  Bases and orthogonality	

11	

 • 	

Generating eye rays—orthographic	

•  Just need to compute the view plane point s:	

–  but where exactly is the view rectangle?	

12	

• 	

Generating eye rays—orthographic	

13	

 • 	

Generating eye rays—perspective	

•  View rectangle needs to be away from viewpoint	

•  Distance is important: “focal length” of camera	

–  still use camera frame but position view rect away from
viewpoint	

–  ray origin always e	

–  ray direction now ���
controlled by s	

14	

• 	

Generating eye rays—perspective	

•  Compute s in the same way; just subtract dw	

–  coordinates of s are (u, v, –d)	

15	

Pixel-to-image mapping	

•  One last detail: (u, v) coords of a pixel	

j	

i	

i =
 –

.5
	

i =
 3

.5
	

j = 2.5	

j = –.5	

16	

 • 	

Ray intersection	

17	

Ray: a half line	

•  Standard representation: point p and direction d	

–  this is a parametric equation for the line	

–  lets us directly generate the points on the line	

–  if we restrict to t > 0 then we have a ray	

–  note replacing d with ad doesn’t change ray (a > 0)	

18	

Ray-sphere intersection: algebraic	

•  Condition 1: point is on ray	

•  Condition 2: point is on sphere	

–  assume unit sphere; see Shirley or notes for general	

•  Substitute:	

–  this is a quadratic equation in t	

19	

 • 	

Ray-sphere intersection: algebraic	

•  Solution for t by quadratic formula:	

–  simpler form holds when d is a unit vector���
but we won’t assume this in practice (reason later)	

–  I’ll use the unit-vector form to make the geometric interpretation	

20	

• 	

Ray-sphere intersection: geometric	

21	

• 	

Ray-box intersection	

•  Could intersect with 6 faces individually	

•  Better way: box is the intersection of 3 slabs	

22	

• 	

Ray-slab intersection	

•  2D example	

•  3D is the same!	

23	

• 	

Intersecting intersections	

•  Each intersection���

is an interval	

•  Want last���
entry point and���
first exit point	

Shirley fig. 10.16	

24	

• 	

Ray-triangle intersection	

•  Condition 1: point is on ray	

•  Condition 2: point is on plane	

•  Condition 3: point is on the inside of all three edges	

•  First solve 1&2 (ray–plane intersection)	

–  substitute and solve for t:	

25	

• 	

Ray-triangle intersection	

•  In plane, triangle is the intersection of 3 half spaces	

25	

26	

• 	

Inside-edge test	

•  Need outside vs. inside	

•  Reduce to clockwise vs. counterclockwise	

–  vector of edge to vector to x	

•  Use cross product to decide	

27	

• 	

Ray-triangle intersection	

28	

 • 	

 	

Ray-triangle intersection	

•  See book for a more efficient method based on linear systems	

–  (don’t need this for Ray 1 anyhow—but stash away for Ray 2)	

29	

 • 	

 	

Image so far	

•  With eye ray generation and sphere intersection	

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 hitSurface, t = s.intersect(ray, 0, +inf)

 if hitSurface is not null

 image.set(ix, iy, white);

 }

30	

 • 	

 	

Intersection against many shapes	

Group.intersect (ray, tMin, tMax) {

 tBest = +inf; firstSurface = null;

 for surface in surfaceList {

 hitSurface, t = surface.intersect(ray, tMin, tBest);

 if hitSurface is not null {

 tBest = t;

 firstSurface = hitSurface;

 }

 }

return hitSurface, tBest;

}

31	

• 	

Image so far	

•  With eye ray generation and scene intersection	

for 0 <= iy < ny

 for 0 <= ix < nx {

 ray = camera.getRay(ix, iy);

 c = scene.trace(ray, 0, +inf);

 image.set(ix, iy, c);

 }

…

Scene.trace(ray, tMin, tMax) {

 surface, t = surfs.intersect(ray, tMin, tMax);

 if (surface != null) return surface.color();

 else return black;

}

32	

 • 	

 	

Shading	

•  Compute light reflected toward camera	

•  Inputs:	

–  eye direction	

–  light direction ���

(for each of many lights)	

–  surface normal	

–  surface parameters ���

(color, shininess, …)	

33	

• 	

Diffuse reflection	

Top face of cube���
receives a certain ���
amount of light	

Top face of ���
60º rotated cube���

intercepts half the light	

In general, light per unit���
area is proportional to���

cos θ = l • n	

34	

• 	

Lambertian shading	

diffuse���
coefficient	

diffusely���
reflected���

light	

illumination���
from source	

35	

• 	

Lambertian shading	

•  Produces matte appearance	

[F
ol

ey
 e

t
al

.]	

36	

 	

Diffuse shading	

37	

 • 	

 	

Image so far	

Scene.trace(Ray ray, tMin, tMax) {

 surface, t = hit(ray, tMin, tMax);

 if surface is not null {

 point = ray.evaluate(t);

 normal = surface.getNormal(point);

 return surface.shade(ray, point,�
 normal, light);

 }

 else return backgroundColor;

}

…

Surface.shade(ray, point, normal, light) {

 v = –normalize(ray.direction);

 l = normalize(light.pos – point);

 // compute shading

}

38	

 • 	

 	

Shadows	

•  Surface is only illuminated if nothing blocks its view of the light.	

•  With ray tracing it’s easy to check	

–  just intersect a ray with the scene!	

39	

• 	

Image so far	

Surface.shade(ray, point, normal, light) {

 shadRay = (point, light.pos – point);

 if (shadRay not blocked) {

 v = –normalize(ray.direction);

 l = normalize(light.pos – point);

 // compute shading

 }

 return black;

}

40	

• 	

Shadow rounding errors	

•  Don’t fall victim to one of the classic blunders:	

•  What’s going on?	

–  hint: at what t does the shadow ray intersect the surface you’re shading?	

41	

• 	

Shadow rounding errors	

•  Solution: shadow rays start a tiny distance from the surface	

•  Do this by moving the start point, or by limiting the t range	

42	

 	

Multiple lights	

•  Important to fill in black shadows	

•  Just loop over lights, add contributions	

•  Ambient shading	

–  black shadows are not really right	

–  one solution: dim light at camera	

–  alternative: add a constant “ambient” color to the shading…	

43	

• 	

 	

Image so far	

shade(ray, point, normal, lights) {

 result = ambient;

 for light in lights {

 if (shadow ray not blocked) {

 result += shading contribution;

 }

 }

 return result;

}

44	

 • 	

 	

Specular shading (Blinn-Phong)	

•  Intensity depends on view direction	

–  bright near mirror configuration	

45	

 • 	

 3	

Specular shading (Blinn-Phong)	

•  Close to mirror ⇔ half vector near normal	

–  Measure “near” by dot product of unit vectors	

specular���
coefficient	

specularly���
reflected���

light	

46	

• 	

Phong model—plots	

•  Increasing n narrows the lobe	

[F
ol

ey
 e

t
al

.]	

47	

 	

 	

Specular shading	

[F
ol

ey
 e

t
al

.]	

48	

 • 	

 	

Diffuse + Phong shading	

49	

Ambient shading	

•  Shading that does not depend on anything	

–  add constant color to account for disregarded illumination

and fill in black shadows	

ambient���
coefficient	

reflected���
ambient���

light	

50	

• 	

Putting it together	

•  Usually include ambient, diffuse, Phong in one model	

•  The final result is the sum over many lights	

51	

• 	

Mirror reflection	

•  Consider perfectly shiny surface	

–  there isn’t a highlight	

–  instead there’s a reflection of other objects	

•  Can render this using recursive ray tracing	

–  to find out mirror reflection color, ask what color is seen

from surface point in reflection direction	

–  already computing reflection direction for Phong…	

•  “Glazed” material has mirror reflection and diffuse	

–  where Lm is evaluated by tracing a new ray	

52	

3	

Mirror reflection	

•  Intensity depends on view direction	

–  reflects incident light from mirror direction	

53	

 • 	

Diffuse + mirror reflection (glazed)	

(glazed material on floor)	

54	

 	

 	

Ray tracer architecture 101	

•  You want a class called Ray	

–  point and direction; evaluate(t)	

–  possible: tMin, tMax	

•  Some things can be intersected with rays	

–  individual surfaces	

–  groups of surfaces (acceleration goes here)	

–  the whole scene	

–  make these all subclasses of Surface	

–  limit the range of valid t values (e.g. shadow rays)	

•  Once you have the visible intersection, compute the color	

–  may want to separate shading code from geometry	

–  separate class: Material (each Surface holds a reference to one)	

–  its job is to compute the color	

55	

 	

 	

Architectural practicalities	

•  Return values	

–  surface intersection tends to want to return multiple values	

•  t, surface or shader, normal vector, maybe surface point	

–  in many programming languages (e.g. Java) this is a pain	

–  typical solution: an intersection record	

•  a class with fields for all these things	

•  keep track of the intersection record for the closest intersection	

•  be careful of accidental aliasing (which is very easy if you’re new to Java)	

•  Efficiency	

	

–  what objects are created for every ray? try to find a place for them

where you can reuse them.	

–  Shadow rays can be cheaper (any intersection will do, don’t need

closest)	

–  but: “First Get it Right, Then Make it Fast”	

