Ray Tracing

COMP575/COMP770

Ray tracing idea light source viewer (eye) illumination ∇ viewing ray visible point objects in scene

Ray Tracing: Example

(from [Whitted80])

Ray Tracing: Example

Ray Tracing for Highly Realistic Images

Volkswagen Beetle with correct shadows and (multi-)reflections on curved surfaces

Reasons for Using Ray Tracing Flexible Primitive Types

Volume visualization using multiple iso-surfaces

Ray tracing algorithm

Generating eye rays

• Use window analogy directly

Generating eye rays

Vector math review

- Vectors and points
- Vector operations
 - addition
 - scalar product
- More products
 - dot product
 - cross product
- Bases and orthogonality

Generating eye rays—orthographic

• Just need to compute the view plane point s:

- but where exactly is the view rectangle?

Generating eye rays—orthographic

$$\mathbf{s} = \mathbf{e} + u\mathbf{u} + v\mathbf{v}$$

 $\mathbf{p} = \mathbf{s}; \ \mathbf{d} = -\mathbf{w}$
 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$

Generating eye rays—perspective

- View rectangle needs to be away from viewpoint
- Distance is important: "focal length" of camera
 - still use camera frame but position view rect away from viewpoint
 - ray origin always **e**
 - ray direction now controlled by s

Generating eye rays—perspective

• Compute **s** in the same way; just subtract d**w**

- coordinates of **s** are (u, v, -d)

$$\mathbf{s} = \mathbf{e} + u\mathbf{u} + v\mathbf{v} - d\mathbf{w}$$

$$\mathbf{p} = \mathbf{e}; \ \mathbf{d} = \mathbf{s} - \mathbf{e}$$

$$\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$$

Pixel-to-image mapping

• One last detail: (u, v) coords of a pixel

Ray intersection

Ray: a half line

• Standard representation: point **p** and direction **d**

$$- t \mathbf{r}^{\mathbf{r}(t)} = \mathbf{p} + t \mathbf{d}_{quation}$$
 for the line

- lets us directly generate the points on the line
- if we restrict to t > 0 then we have a ray
- note replacing **d** with $a\mathbf{d}$ doesn't change ray (a > 0)

Ray-sphere intersection: algebraic

• Condition I: point is on ray

 $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$

- Condition 2: point is on sphere
 - assume unit sphere; see Shirley or notes for general

$$\|\mathbf{x}\| = 1 \Leftrightarrow \|\mathbf{x}\|^2 = 1$$
$$f(\mathbf{x}) = \mathbf{x} \cdot \mathbf{x} - 1 = 0$$

• Substitute:

$$(\mathbf{p} + t\mathbf{d}) \cdot (\mathbf{p} + t\mathbf{d}) - 1 = 0$$

- this is a quadratic equation in t

Ray-sphere intersection: algebraic

• Solution for *t* by quadratic formula:

$$t = \frac{-\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - (\mathbf{d} \cdot \mathbf{d})(\mathbf{p} \cdot \mathbf{p} - 1)}}{\mathbf{d} \cdot \mathbf{d}}$$
$$t = -\mathbf{d} \cdot \mathbf{p} \pm \sqrt{(\mathbf{d} \cdot \mathbf{p})^2 - \mathbf{p} \cdot \mathbf{p} + 1}$$

- simpler form holds when **d** is a unit vector but we won't assume this in practice (reason later)
- I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

Ray-box intersection

- Could intersect with 6 faces individually
- Better way: box is the intersection of 3 slabs

Ray-slab intersection

- 2D example
- 3D is the same!

 $p_{x} + t_{x\min} d_{x} = x_{\min}$ $t_{x\min} = (x_{\min} - p_{x})/d_{x}$ $p_{y} + t_{y\min} d_{y} = y_{\min}$ $t_{y\min} = (y_{\min} - p_{y})/d_{y}$ x_{\min} $t_{x\min}$ $t_{x\max}$ $t_{x\max}$

Intersecting intersections

- Each intersection ۲ is an interval
- Want last • entry point and first exit point

Shirley fig. 10.16

Ray-triangle intersection

• Condition I: point is on ray

• Condition $\mathbf{r}(t) = \mathbf{p} + t\mathbf{d}$ • Condition \mathbf{L} . Point is on plane

 $(\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} = 0$ Condition 3. point is on the inside of all three edges

- First solve 1&2 (ray-plane intersection)
 - substitute and solve for t:

$$(\mathbf{p} + t\mathbf{d} - \mathbf{a}) \cdot \mathbf{n} = 0$$
$$t = \frac{(\mathbf{a} - \mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$$

Ray-triangle intersection

• In plane, triangle is the intersection of 3 half spaces

Inside-edge test

- Need outside vs. inside
- Reduce to clockwise vs. counterclockwise
 vector of edge to vector to x
- Use cross product to decide

Ray-triangle intersection

$$(\mathbf{b} - \mathbf{a}) \times (\mathbf{x} - \mathbf{a}) \cdot \mathbf{n} > 0$$

 $(\mathbf{c} - \mathbf{b}) \times (\mathbf{x} - \mathbf{b}) \cdot \mathbf{n} > 0$
 $(\mathbf{a} - \mathbf{c}) \times (\mathbf{x} - \mathbf{c}) \cdot \mathbf{n} > 0$

Ray-triangle intersection

See book for a more efficient method based on linear systems

 (don't need this for Ray I anyhow—but stash away for Ray 2)

Image so far

• With eye ray generation and sphere intersection

```
Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <= iy < ny
for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    hitSurface, t = s.intersect(ray, 0, +inf)
    if hitSurface is not null
        image.set(ix, iy, white);
}</pre>
```


Intersection against many shapes

```
Group.intersect (ray, tMin, tMax) {
   tBest = +inf; firstSurface = null;
   for surface in surfaceList {
      hitSurface, t = surface.intersect(ray, tMin, tBest);
      if hitSurface is not null {
        tBest = t;
        firstSurface = hitSurface;
      }
   }
  return hitSurface, tBest;
}
```

Image so far

• With eye ray generation and scene intersection

```
for 0 <= iy < ny
for 0 <= ix < nx {
    ray = camera.getRay(ix, iy);
    c = scene.trace(ray, 0, +inf);
    image.set(ix, iy, c);
}</pre>
```

...

```
Scene.trace(ray, tMin, tMax) {
    surface, t = surfs.intersect(ray, tMin, tMax);
    if (surface != null) return surface.color();
    else return black;
}
```


Shading

- Compute light reflected toward camera
- Inputs:
 - eye direction
 - light direction
 (for each of many lights)
 - surface normal
 - surface parameters
 (color, shininess, ...)

Diffuse reflection

Top face of cube receives a certain amount of light Top face of 60° rotated cube intercepts half the light In general, light per unit area is proportional to $\cos \theta = \mathbf{I} \cdot \mathbf{n}$

Lambertian shading

Lambertian shading

• Produces matte appearance

$$k_d \longrightarrow$$

Diffuse shading

Image so far

•••

```
Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,
            normal, light);
    }
    else return backgroundColor;
}
```

```
Surface.shade(ray, point, normal, light) {
    v = -normalize(ray.direction);
    l = normalize(light.pos - point);
    // compute shading
}
```


Shadows

- Surface is only illuminated if nothing blocks its view of the light.
- With ray tracing it's easy to check
 - just intersect a ray with the scene!

Image so far

```
Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos - point);
    if (shadRay not blocked) {
        v = -normalize(ray.direction);
        l = normalize(light.pos - point);
        // compute shading
    }
    return black;
}
```


Shadow rounding errors

• Don't fall victim to one of the classic blunders:

- What's going on?
 - hint: at what t does the shadow ray intersect the surface you're shading?

Shadow rounding errors

• Solution: shadow rays start a tiny distance from the surface

• Do this by moving the start point, or by limiting the t range

Multiple lights

- Important to fill in black shadows
- Just loop over lights, add contributions
- Ambient shading
 - black shadows are not really right
 - one solution: dim light at camera
 - alternative: add a constant "ambient" color to the shading...

Image so far

```
shade(ray, point, normal, lights) {
  result = ambient;
  for light in lights {
     if (shadow ray not blocked) {
        result += shading contribution;
     }
   }
  return result;
}
```


Specular shading (Blinn-Phong)

- Intensity depends on view direction
 - bright near mirror configuration

Specular shading (Blinn-Phong)

 Close to mirror ⇔ half vector near normal – Measure "near" by dot product of unit vectors

[Foley et al.]

Phong model—plots

• Increasing *n* narrows the lobe

Fig. 16.9 Different values of $\cos^n \alpha$ used in the Phong illumination model.

Specular shading

p

Diffuse + Phong shading

Ambient shading

- Shading that does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

Putting it together

• Usually include ambient, diffuse, Phong in one model

$$egin{array}{ll} L = L_a + L_d + L_s \ = k_a \, I_a + k_d \, I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s \, I \max(0, \mathbf{n} \cdot \mathbf{h})^p \end{array}$$

• The final result is the sum over many lights

$$egin{aligned} L &= L_a + \sum_{i=1}^N \left[(L_d)_i + (L_s)_i
ight] \ L &= k_a \, I_a + \sum_{i=1}^N \left[k_d \, I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s \, I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^p
ight] \end{aligned}$$

Mirror reflection

- Consider perfectly shiny surface
 - there isn't a highlight
 - instead there's a reflection of other objects
- Can render this using recursive ray tracing
 - to find out mirror reflection color, ask what color is seen from surface point in reflection direction
 - already computing reflection direction for Phong...
- "Glazed" material has mirror reflection and diffuse $L = L_a + L_d + L_m$

- where L_m is evaluated by tracing a new ray

Mirror reflection

- Intensity depends on view direction
 - reflects incident light from mirror direction

$$\mathbf{r} = \mathbf{v} + 2((\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v})$$

= $2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$

Diffuse + mirror reflection (glazed)

Ray tracer architecture 101

- You want a class called Ray
 - point and direction; evaluate(t)
 - possible: tMin, tMax
- Some things can be intersected with rays
 - individual surfaces
 - groups of surfaces (acceleration goes here)
 - the whole scene
 - make these all subclasses of Surface
 - limit the range of valid t values (e.g. shadow rays)
- Once you have the visible intersection, compute the color
 - may want to separate shading code from geometry
 - separate class: Material (each Surface holds a reference to one)
 - its job is to compute the color

Architectural practicalities

- Return values
 - surface intersection tends to want to return multiple values
 - t, surface or shader, normal vector, maybe surface point
 - in many programming languages (e.g. Java) this is a pain
 - typical solution: an intersection record
 - a class with fields for all these things
 - keep track of the intersection record for the closest intersection
 - be careful of accidental aliasing (which is very easy if you're new to Java)
- Efficiency
 - what objects are created for every ray? try to find a place for them where you can reuse them.
 - Shadow rays can be cheaper (any intersection will do, don't need closest)
 - but: "First Get it Right, Then Make it Fast"