Ray Tracing

COMP575/COMP770

Ray tracing idea

V.
>,°\< light source

viewer (eye)

<

visible point

objects
in scene

Ray Tracing: Example

(from [Whitted80])

Ray Tracing: Example

Ray Tracing for Highly Realistic
Images

Volkswagen Beetle with correct shadows and (multi-)reflections on
curved surfaces

Reasons for Using Ray Tracing
Flexible Primitive Types

Volume visualization using multiple 1so-surfaces

Ray tracing algorithm

\/
>,'\< light source
viewer (eye) -
=
N 5
Vi 3
ng l‘ay %
for each pixel { o .
compute viewing ray visible point
intersect ray with scene .
compute illumination at visible point QbJeCtS
put result into image In scene
}

Generating eye rays

* Use window analogy directly

view plane

viewpoint

pi;é_l-_“‘“‘““
position

viewing ray

Generating eye rays

view rect

viewpoint

N~ pixel
position

view rect

pixel /
position viewing ray

viewing ray

PERSPECTIVE
ORTHOGRAPHIC

Vector math review
* Vectors and points

* Vector operations
— addition
— scalar product

* More products
— dot product
— cross product

* Bases and orthogonality

Generating eye rays—orthographic

* Just need to compute the view plane point s:

p=s;d=d,
r)=p+u

— but where exactly is the view rectangle!

Generating eye rays—orthographic

=17

S=e+uu-+ vv

L4 v

st
p=s;d=—w d\
e~u

r(t) =p+td

Generating eye rays—perspective

* View rectangle needs to be away from viewpoint
« Distance is important: focal length” of camera

— still use camera frame but position view rect away from
viewpoint

— ray origin always e

— ray direction now
controlled by s

p=¢
r))=p+u

Generating eye rays—perspective

 Compute s in the same way; just subtract dw
— coordinates of s are (u, v, —d)

s=e+uu+vv—dw
p=e d=s—e
r(t) =p+td

/

N

Pixel-to-image mapping

* One last detail: (u, v) coords of a pixel

{j
O(0.2) © © O(J’ 2)
C){a ” O O O

C;O, 0) 0(1,0} 0(2, 0) 0(3, 0)

i=-5

i=35

j=25

u=1+(r—1)(z+0.5)/n,
v=>b+(t—b)(j +0.5)/n,

%

Ray intersection

Ray: a half line

* Standard representation: point p and direction d

4r(t) =p +td

— lets us directly generate the points on the line

quation for the line

— if we restrict to t > 0 then we have a ray
— note replacing d with ad doesn’t change ray (a > 0)

Ray-sphere intersection: algebraic

e Condition |: point is on ray
r(t) =p+td

* Condition 2: point is on sphere

— assume unit sphere; see Shirley or notes for general
x| =1« [x[I" =1
f(x)=x-x—1=0

* Substitute:

(p+td)-(p+td)—1=0

— this is a quadratic equation in t

Ray-sphere intersection: algebraic

* Solution for t by quadratic formula:

,_—d-p+\(d-p?—(d-dp-p-1)
B d-d
t=-d-px+/(d-p2—p-p+1

— simpler form holds when d is a unit vector
but we won't assume this in practice (reason later)

— I'll use the unit-vector form to make the geometric interpretation

Ray-sphere intersection: geometric

[

w \
10
\ a

tm = —p-d
lz,=p-p—(p-d)’
At=/1-12,
=(p-d)?—-p-p+1
tojlztm:I:At:—p-d:l:\/(p-d)z—p-p—l—l

*20

Ray-box intersection

* Could intersect with 6 faces individually

* Better way: box is the intersection of 3 slabs

21

Ray-slab intersection

* 2D example

e 3D is the same!

(dy,d\)
Pz + trmin dy = Tmin S

tmmin — (xmin — p:c)/d:c

Ymin

Py =+ tymin dy — Ymin
tymin — (ymin — py)/dy

Ymax

Xmin Xmax

22

Intersecting intersections

 Each intersection

is an interval fymax
* Woant last

entry point and

first exit point /fxmax -

txmin
tmin = maX(twmina tymin) e et
€ | mins xmax] —®

tmax — mln(tazmaxa tymax)

te | bymin- [ymax]

te [txmin' txmax] a [tymin' tymax]

Shirley fig. 10.16

*23

Ray-triangle intersection

Condition |: point is on ray

t td
COﬂdlthf(L) puniL _||; vl Plane

(x—a) - n=0
Condition 5. POt 1> Oll che inside of all three edges

First solve 1&2 (ray—plane intersection)
— substitute and solve for t:

(p+td—a) n=0

(a—p)'n

4
d n

24

Ray-triangle intersection

* In plane, triangle is the intersection of 3 half spaces

25

Inside-edge test

* Need outside vs. inside

* Reduce to clockwise vs. counterclockwise
— vector of edge to vector to X

* Use cross product to decide

Q|7
* \/<
2 7,/ OU
/
/ N /"/
/53
L
< - /? \ﬂg

*26

Ray-triangle intersection

(b—a)x (x—a)-n>0
(c—=b)x(x—b)-n>0

(a—c)x(x—c)-n>0

27

Ray-triangle intersection

* See book for a more efficient method based on linear systems
— (don’t need this for Ray | anyhow—but stash away for Ray 2)

*28

Image so far

* With eye ray generation and sphere intersection

Surface s = new Sphere((0.0, 0.0, 0.0), 1.0);
for 0 <=iy <ny
for 0 <=ix<nx {
ray = camera.getRay(ix, iy);
hitSurface, t = s.intersect(ray, O, +inf)
if hitSurface is not null
image.set(ix, iy, white);

*29

Intersection against many shapes

Group.intersect (ray, tMin, tMax) {
tBest = +inf; firstSurface = null;
for surface in surfaceList {
hitSurface, t = surface.intersect(ray, tMin, tBest);
if hitSurface is not null {
tBest = t;
firstSurface = hitSurface;
}
}

return hitSurface, tBest;

}

*30

Image so far

* With eye ray generation and scene intersection

for 0 <=iy <ny
for0<=ix<nx {
ray = camera.getRay(ix, iy);
¢ = scene.trace(ray, O, +inf);
image.set(ix, iy, ¢);

}

Scene.trace(ray, tMin, tMax) {
surface, t = surfs.intersect(ray, tMin, tMax);
if (surface != null) return surface.color();
else return black;

}

31

Shading

* Compute light reflected toward camera

* Inputs:

eye direction

light direction)‘./
(for each of many lights) /
surface normal

A

surface parameters
(color, shininess, ...)

A0

°32

Diffuse reflection

Yvy

Top face of cube
receives a certain
amount of light

r

\

I

F

\

Top face of
60° rotated cube
intercepts half the light

Yvyy

...' >
e

A

In general, light per unit
area is proportional to
cosO=l+n

°33

Lambertian shading

illumination
L from source

7 |

1 AR Lqg=kaql ma,x(O, n- l)

2 v ‘
diffuse
coefficient

diffusely
reflected
light

34

Lambertian shading

* Produces matte appearance

kg —

[Foley et al.]

*35

Diffuse shading

36

Image so far

Scene.trace(Ray ray, tMin, tMax) {

surface, t = hit(ray, tMin, tMax);

if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,

normal, light);
}

else return backgroundColor;

)

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading

}

°37

Shadows

* Surface is only illuminated if nothing blocks its view of the light.

* With ray tracing it’s easy to check
— just intersect a ray with the scene!

°38

Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos — point);
if (shadRay not blocked) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading
}

return black;

}

*39

Shadow rounding errors

« Don't fall victim to one of the classic blunders:

* What's going on?
— hint: at what t does the shadow ray intersect the surface you're shading?

*40

Shadow rounding errors
* Solution: shadow rays start a tiny distance from the surface

* Do this by moving the start point, or by limiting the t range

*4]

Multiple lights

* Important to fill in black shadows
* Just loop over lights, add contributions

* Ambient shading
— black shadows are not really right

— one solution: dim light at camera
— alternative: add a constant “ambient” color to the shading...

42

Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;

J
}

return result;

}

43

Specular shading (Blinn-Phong)

* Intensity depends on view direction

— bright near mirror configuration

44

Specular shading (Blinn-Phong)

* Close to mirror < half vector near normal
— Measure near by dot product of unit vectors

S h = bisector(v, 1)
v 1]

Ls = ks I max(0, cos a)”

= ks I'max(0,n - h)?

specularly
reflected
light

specular
coefficient

°45

Phong model—plots

* Increasing n narrows the lobe

CoSs o cos? o cos® o cosé4 o

0 oL AN
0 90° 0° 90

Fig. 16.9 Different values of cos” a used in the Phong illumination model.

90

[Foley et al.]

*46

Specular shading

[Foley et al.]

47

Diffuse + Phong shading

°48

Ambient shading

* Shading that does not depend on anything

— add constant color to account for disregarded illumination
and fill in black shadows

Lo, =ko 1,

ATy 7 4
-

ambient
coefficient

reflected
ambient
light

Putting it together

* Usually include ambient, diffuse, Phong in one model

LzLa+Ld+Ls
= ko Iy + kg Imax(0,n - 1) + ks I max(0,n - h)?

* The final result is the sum over many lights

N
L=L,+ Z (La)i + (Ls)i]

1=1

N
L = ka Ia + Z [kd Iz max(O, 1n- lz) + ks Iz max(O, n- h’b)p]

1=1

*50

Mirror reflection

* Consider perfectly shiny surface
— there isn’t a highlight
— instead there’s a reflection of other objects

* Can render this using recursive ray tracing

— to find out mirror reflection color, ask what color is seen
from surface point in reflection direction

— already computing reflection direction for Phong...

e "Glazed” material has mirror reflection and diffuse

— where L is evaluated by tracing a new ray

51

Mirror reflection

* Intensity depends on view direction

— reflects incident light from mirror direction

7

r=v+2(n-v)n—v)

=2(n-v)n—v

52

Diffuse + mirror reflection (glazed)

(glazed material on floor)

°53

Ray tracer architecture 101

* You want a class called Ray

point and direction; evaluate(t)
possible: tMin, tMax

* Some things can be intersected with rays

individual surfaces

groups of surfaces (acceleration goes here)

the whole scene

make these all subclasses of Surface

limit the range of valid t values (e.g. shadow rays)

* Once you have the visible intersection, compute the color

may want to separate shading code from geometry
separate class: Material (each Surface holds a reference to one)
its job is to compute the color

54

Architectural practicalities

* Return values

— surface intersection tends to want to return multiple values
* t, surface or shader, normal vector, maybe surface point

— in many programming languages (e.g. Java) this is a pain

— typical solution: an intersection record
* a class with fields for all these things
* keep track of the intersection record for the closest intersection
* be careful of accidental aliasing (which is very easy if you're new to Java)

* Efficiency

— what objects are created for every ray? try to find a place for them
where you can reuse them.

— Shadow rays can be cheaper (any intersection will do, don’t need
closest)

— but: “First Get it Right, Then Make it Fast”

55

