
1

Scene Graphs
COMP 575 / COMP 770



2

Scene Graphs
• Good background at Wikipedia:
http://en.wikipedia.org/wiki/Scene_graph
1. A scene graph is a collection of nodes in a graph or tree 

structure
2. Nodes in a scene graph (generally) represent entities or 

objects in the scene
3. Define logical relationships

e.g. between a knight and a horse so that the knight is considered an 
extension to the horse;

4. Define spatial relationships

5. Spatial hierarchies and memory overhead



3

Data structures with transforms
• Representing a drawing (“scene”)
• List of objects
• Transform for each object

– can use minimal primitives: ellipse is transformed circle
– transform applies to points of object



4

Example
• Can represent drawing with flat list

– but editing operations require updating many transforms



5

Groups of objects
• Treat a set of objects as one
• Introduce new object type: group

– contains list of references to member objects
• This makes the model into a tree

– interior nodes = groups
– leaf nodes = objects
– edges = membership of object in group



6

Example
• Add group as a new object type

– lets the data structure reflect the drawing structure
– enables high-level editing by changing just one node



7

The Scene Graph (tree)
• A name given to various kinds of graph structures 

(nodes connected together) used to represent 
scenes

• Simplest form: tree
– just saw this
– every node has one parent
– leaf nodes are identified

with objects in the scene



8

Concatenation and hierarchy
• Transforms associated with nodes or edges
• Each transform applies to all geometry below it

– want group transform to transform each member
– members already transformed—concatenate

• Frame transform for object is product of all 
matrices along path from root
– each object’s transform describes relationship between 

its local coordinates and its group’s coordinates
– frame-to-canonical transform is the result of repeatedly 

changing coordinates from group to containing group



9

Instances
• Simple idea: allow an object to be a member of 

more than one group at once
– transform different in each case
– leads to linked copies
– single editing operation changes all instances



10

Example
• Allow multiple references to nodes

– reflects more of drawing structure
– allows editing of repeated parts in one operation



11

The Scene Graph (with instances)
• With instances, there is no more tree

– an object that is instanced multiple 
times has more than one parent

• Transform tree becomes DAG
– directed acyclic graph
– group is not allowed to contain 

itself, even indirectly
• Transforms still accumulate 

along path from root
– now paths from root to leaves

are identified with scene objects



12

Implementing a hierarchy
• Object-oriented language is convenient

– define shapes and groups as derived from single class
abstract class Shape {

void draw();
}
class Square extends Shape {

void draw() {
// draw unit square

}
}
class Circle extends Shape {

void draw() {
// draw unit circle

}
}



13

Implementing traversal
• Pass a transform down the hierarchy

– before drawing, concatenate
abstract class Shape {

void draw(Transform t_c);
}
class Square extends Shape {

void draw(Transform t_c) {
// draw t_c * unit square

}
}
class Circle extends Shape {

void draw(Transform t_c) {
// draw t_c * unit circle

}
}

class Group extends Shape {
Transform t;
ShapeList members;
void draw(Transform t_c) {

for (m in members) {
m.draw(t_c * t);

}
}

}



14

Basic Scene Graph operations
• Editing a transformation

– good to present usable UI
• Getting transform of object in canonical (world) frame

– traverse path from root to leaf
• Grouping and ungrouping

– can do these operations without moving anything
– group: insert identity node
– ungroup: remove node, push transform to children

• Reparenting
– move node from one parent to another
– can do without altering position



15

Adding more than geometry
• Objects have properties besides shape

– color, shading parameters
– approximation parameters (e.g. precision of subdividing 

curved surfaces into triangles)
– behavior in response to user input
– …

• Setting properties for entire groups is useful
– paint entire window green

• Many systems include some kind of property 
nodes
– in traversal they are read as, e.g., “set current color”



16

Scene Graph variations
• Where transforms go

– in every node
– on edges
– in group nodes only
– in special Transform nodes

• Tree vs. DAG
• Nodes for cameras and lights?



Spatial Hierarchies
• Broad classification:

– Spatial hierarchies
• Grids
• Octrees
• Kd-trees, BSP trees

– Object hierarchies
• Bounding volume hierarchies
• Spatial kd-trees



Spatial hierarchies: grids
• Regular subdivision of space into cells

– Cells almost always cubes
– Each object is referenced in 

each cell it overlaps
– Nested grids also possible



Spatial hierarchies: kd-trees
• Binary tree of space subdivisions

– Each is axis-aligned plane 

xx
yy yy



Spatial hierarchies: kd-trees

• Traversing a kd-tree: recursive
– Start at root node
– For current node:

• If inner node (for ray tracing):
– Find intersection of ray with plane
– If ray intersects both children, recurse on

near side, then far side
– Otherwise, recurse on side it intersects

• If leaf node:
– Intersect with all object. If hit, terminate.



Kd-tree traversal
• Simple and fast implementation

– In practice: using stack, not recursion
– Very quick intersection test (couple FLOPS + tests)

• Overall: logarithmic complexity for each ray or 
intersection test



Object hierarchies: BVHs

• Different approach: 
subdivide objects, not space
– Hierarchical clustering of objects
– Each cluster represented by bounding volume

– Binary tree
• Each parent node fully contains children



Bounding volumes
• Practically anything can be bounding volume

– Just need ray intersection method
• Typical choices:

– Spheres
– Axis-aligned bounding boxes (AABBs)
– Oriented bounding boxes (OBBs)
– k-DOPs

• Trade-off between intersection speed and how 
closely the BV encloses the geometry



BVH traversal
• Recursive algorithm:

– Start with root node
– For current node (ray tracing):

• Does ray intersect node’s BV? If no, return
• Is inner node?

– Yes, recurse on children
• Is leaf node?

– Intersect with object(s) in node, store intersection 
results

• Widely used for view frustum culling or collision 
checking



Choosing a structure
• There is no ‘best’ acceleration structure

– All have pros and cons
• Grid:

+ fast construction
- bad for high local detail (teapot/stadium)



Choosing a structure
• There is no ‘best’ acceleration structure

– All have pros and cons
• kd-tree:

+ fast traversal
- expensive build, only static scenes



Choosing a structure
• There is no ‘best’ acceleration structure

– All have pros and cons
• BVH:

+ can be updated for dynamic scenes
- traversal more expensive than kd-tree


