
1

Triangle meshes

COMP575/COMP 770

2

Notation

• nT = #tris; nV = #verts; nE = #edges

• Euler: nV – nE + nT = 2 for a simple closed surface
– and in general sums to small integer

– argument for implication that nT:nE:nV is about 2:3:1

[F
ol

ey
 e

t a
l.]

3

Validity of triangle meshes

• in many cases we care about the mesh being able to
bound a region of space nicely

• in other cases we want triangle meshes to fulfill
assumptions of algorithms that will operate on them
(and may fail on malformed input)

• two completely separate issues:
– topology: how the triangles are connected (ignoring the

positions entirely)
– geometry: where the triangles are in 3D space

4

Topology/geometry examples

• same geometry, different mesh topology:

• same mesh topology, different geometry:

5

Topological validity

• strongest property, and most simple: be a manifold
– this means that no points should be "special"
– interior points are fine
– edge points: each edge should have exactly 2 triangles
– vertex points: each vertex should have one loop of

triangles
• not too hard to weaken this to allow boundaries

[F
ol

ey
 e

t a
l.]

6

Geometric validity

• generally want non-self-intersecting surface
• hard to guarantee in general

– because far-apart parts of mesh might intersect

7

Representation of triangle meshes

• Compactness
• Efficiency for rendering

– enumerate all triangles as triples of 3D points

• Efficiency of queries
– all vertices of a triangle
– all triangles around a vertex
– neighboring triangles of a triangle
– (need depends on application)

• finding triangle strips
• computing subdivision surfaces
• mesh editing

8

Representations for triangle meshes

• Separate triangles
• Indexed triangle set

– shared vertices

• Triangle strips and triangle fans
– compression schemes for transmission to hardware

• Triangle-neighbor data structure
– supports adjacency queries

• Winged-edge data structure
– supports general polygon meshes

9

Separate triangles

1
0

Separate triangles

• array of triples of points

– float[nT][3][3]: about 72 bytes per vertex

• 2 triangles per vertex (on average)
• 3 vertices per triangle
• 3 coordinates per vertex
• 4 bytes per coordinate (float)

• various problems
– wastes space (each vertex stored 6 times)
– cracks due to roundoff
– difficulty of finding neighbors at all

1
1

Indexed triangle set

• Store each vertex once
• Each triangle points to its three vertices

Triangle {
Vertex vertex[3];
}

Vertex {
float position[3]; // or other data
}

// ... or ...

Mesh {
float verts[nv][3]; // vertex positions (or other
data)
int tInd[nt][3]; // vertex indices
}

1
2

Indexed triangle set

1
3

Indexed triangle set

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex

• array of triples of indices (per triangle)

– int[nT][3]: about 24 bytes per vertex

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• total storage: 36 bytes per vertex (factor of 2 savings)
• represents topology and geometry separately
• finding neighbors is at least well defined

1
4

Triangle strips

• Take advantage of the
mesh property
– each triangle is usually

adjacent to the previous
– let every vertex create a triangle by reusing the second and

third vertices of the previous triangle
– every sequence of three vertices produces a triangle (but

not in the same order)
– e. g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to

(0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
– for long strips, this requires about one index per triangle

1
5

Triangle strips

4, 0

1
6

Triangle strips

• array of vertex positions

– float[nV][3]: 12 bytes per vertex

• (3 coordinates x 4 bytes) per vertex

• array of index lists

– int[nS][variable]: 2 + n indices per strip

– on average, (1 + ε) indices per triangle (assuming long strips)
• 2 triangles per vertex (on average)
• about 4 bytes per triangle (on average)

• total is 20 bytes per vertex (limiting best case)
– factor of 3.6 over separate triangles; 1.8 over indexed mesh

1
7

Triangle fans

• Same idea as triangle strips, but keep oldest rather
than newest
– every sequence of three vertices produces a triangle
– e. g., 0, 1, 2, 3, 4, 5, … leads to

(0 1 2), (0 2 3), (0 3 4), (0 4 5), …
– for long fans, this requires

about one index per triangle
• Memory considerations exactly the

same as triangle strip

1
8

Triangle neighbor structure

• Extension to indexed
triangle set

• Triangle points to its three
neighboring triangles

• Vertex points to a single
neighboring triangle

• Can now enumerate
triangles around a vertex

1
9

Triangle neighbor structure
Triangle {
Triangle nbr[3];
Vertex vertex[3];
}

// t.neighbor[i] is adjacent
// across the edge from i to i+1

Vertex {
// ... per-vertex data ...
Triangle t; // any adjacent tri
}

// ... or ...

Mesh {
// ... per-vertex data ...
int tInd[nt][3]; // vertex indices
int tNbr[nt][3]; // indices of neighbor
triangles
int vTri[nv]; // index of any adjacent
triangle
}

2
0

Triangle neighbor structure

2
1

Triangle neighbor structure

TrianglesOfVertex
(v) {
t = v.t;
do {

find t.vertex[i] ==
v;
t = t.nbr[pred(i)];
} while (t != v.t);

}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;

2
2

Triangle neighbor structure

• indexed mesh was 36 bytes per vertex
• add an array of triples of indices (per triangle)

– int[nT][3]: about 24 bytes per vertex

• 2 triangles per vertex (on average)
• (3 indices x 4 bytes) per triangle

• add an array of representative triangle per vertex

– int[nV]: 4 bytes per vertex

• total storage: 64 bytes per vertex
– still not as much as separate triangles

2
3

Triangle neighbor structure—refined
Triangle {
Edge nbr[3];
Vertex vertex[3];
}

// if t.nbr[i].i == j
// then t.nbr[i].t.nbr[j] == t

Edge {
// the i-th edge of triangle t
Triangle t;
int i; // in {0,1,2}
// in practice t and i share 32
bits
}

Vertex {
// ... per-vertex data ...
Edge e; // any edge leaving
vertex
}

T0.nbr[0] = { T1, 2
}
T1.nbr[2] = { T0, 0
}
V0.e = { T1, 0 }

2
4

Triangle neighbor structure

TrianglesOfVertex(v)
{
{t, i} = v.e;
do {

{t, i} = t.nbr[pred
(i)];
} while (t != v.t);

}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;

T0.nbr[0] = { T1, 2
}
T1.nbr[2] = { T0, 0
}
V0.e = { T1, 0 }

2
5

Winged-edge mesh

• Edge-centric rather than
face-centric
– therefore also works for

polygon meshes

• Each (oriented) edge points to:
– left and right forward edges
– left and right backward edges
– front and back vertices
– left and right faces

• Each face or vertex points to
one edge

2
6

Winged-edge mesh

Edge {
Edge hl, hr, tl, tr;
Vertex h, t;
Face l, r;
}

Face {
// per-face data
Edge e; // any adjacent
edge
}

Vertex {
// per-vertex data
Edge e; // any incident
edge
}

hl hr

tl tr

l

h

t

r

2
7

Winged-edge structure

EdgesOfFace(f) {
e = f.e;
do {

if (e.l == f)
e = e.hl;

else
e = e.tr;

} while (e != f.
e);

}

EdgesOfVertex(v)
{
e = v.e;
do {

if (e.t == v)
e = e.tl;

else
e = e.hr;

} while (e != v.
e);

}

2
8

Winged-edge structure

• array of vertex positions: 12 bytes/vert
• array of 8-tuples of indices (per edge)

– head/tail left/right edges + head/tail verts + left/right tris

– int[nE][8]: about 96 bytes per vertex

• 3 edges per vertex (on average)
• (8 indices x 4 bytes) per edge

• add a representative edge per vertex

– int[nV]: 4 bytes per vertex

• total storage: 112 bytes per vertex
– but it is cleaner and generalizes to polygon meshes

2
9

Winged-edge optimizations

• Omit faces if not needed
• Omit one edge pointer

on each side
– results in one-way traversal

3
0

• Simplifies, cleans up winged edge
– still works for polygon meshes

• Each half-edge points to:
– next edge (left forward)
– next vertex (front)
– the face (left)
– the opposite half-edge

• Each face or vertex points to
one half-edge

Half-edge structure

3
1

Half-edge structure

HEdge {
HEdge pair, next;
Vertex v;
Face f;
}

Face {
// per-face data
HEdge h; // any adjacent h-
edge
}

Vertex {
// per-vertex data
HEdge h; // any incident h-
edge
}

f

v

nex
t

pair

3
2

Half-edge structure

EdgesOfFace(f) {
h = f.h;
do {

h = h.next;
} while (h != f.
h);

}

EdgesOfVertex(v)
{
h = v.h;
do {

h = h.pair.
next;

} while (h != v.
h);

}

3
3

Half-edge structure

• array of vertex positions: 12 bytes/vert
• array of 4-tuples of indices (per h-edge)

– next, pair h-edges + head vert + left tri
– int[2nE][4]: about 96 bytes per vertex

• 6 h-edges per vertex (on average)
• (4 indices x 4 bytes) per h-edge

• add a representative h-edge per vertex
– int[nV]: 4 bytes per vertex

• total storage: 112 bytes per vertex

3
4

• Omit faces if not needed
• Use implicit pair pointers

– they are allocated in pairs
– they are even and odd in an array

Half-edge optimizations

