
OpenGL
Comp 575/770

Spring 2016

What is OpenGL?
● Cross platform API for 2D and 3D rendering

○ only provides rendering APIs, no windowing/input/sound APIs

● Developers need an abstraction between graphics application and graphics
hardware drivers

○ OpenGL provides a unified interface to all kinds of graphics hardware.
● Has libraries for many languages
● Originally released in 1992

○ At version 4.5 currently

Similar APIs
● OpenGL ES

○ Variant of OpenGL for Embedded Systems
○ Highly popular due to iOS, Android
○ Some high-end OpenGL features missing

● Direct 3D
○ Microsoft’s rendering API
○ Xbox and Windows
○ Feature set nearly identical to OpenGL

● Vulkan
○ Spiritual successor to OpenGL, was initially called the “next generation OpenGL initiative”
○ Lower level api with less driver overhead
○ Can distribute workloads over multiple CPU cores
○ SPIR-V

OpenGL API Family
● OpenGL

○ only provides rendering API
● GLU (OpenGL Utility Functions)

○ OpenGL Utility functions
○ Various helper functions for matrices, surfaces, etc.
○ Packaged with OpenGL

● GLUT (OpenGL Utility Toolkit)
○ Manages window creation, keyboard/mouse input, etc.
○ Modern implementation: FreeGLUT

● GLFW (OpenGL Framework)
○ Similar to GLUT, but modern and gives finer control over the event/game loop
○ Better for games and applications that need control over loop timing

OpenGL Pipeline
● implements a standard graphics pipeline (for rasterization)
● Most GPUs today are programmable
● Many are not though

○ OpenGL provides fixed-function mode for these

OpenGL Pipeline
● Fixed-Function

○ Overall pipeline is fixed, with some configurability
○ Can specify matrices, configure depth buffer, etc.
○ Once data is specified, OpenGL takes over
○ Can perform per-vertex lighting

● Programmable
○ Can specify shaders for different stages of the pipeline

○ Vertex shaders, fragment shaders, geometry shaders,
etc.

○ Shaders written in GLSL (OpenGL Shading Language)
○ Preferred way to write OpenGL code

Geometry Shader

Fixed Function

Primitives
● Input to the fixed-function pipeline are primitives
● Primitives are a sequence of vertices
● OpenGL interprets them differently depending on arguments to glBegin
● Triangle List

○ list of triangles, every 3 vertices is interpreted as a triangle

● Triangle Strip
○ first 3 vertices are interpreted as a triangle
○ every vertex after the first 3 make a new triangle by reusing the preceding 2 vertices

● Triangle Fan
○ first 3 vertices are interpreted as a triangle

○ every vertex after the first 3 make a new triangle by reusing the preceding vertex and the first
vertex

Primitive Example

Primitive Example
● All OpenGL functions begin with gl
● Vertex is the “name” of the function
● The following number (Vertex2) specifies

how many components to use
● The last letter (Vertex2f) specifies the

components are floats

Color Interpolation
● Colors are interpolated between the

vertices of a triangle
● Naive (affine): linear interpolation
● Perspective correct: linear interpolate

colors divided by depth and then use
interpolated reciprocal of depth to recover
the color

Transform Pipeline
● Our version:

○ p = MvpMorthMperspMcamMmodelp0

● OpenGL:
○ p = MviewportMprojectionMmodelviewp0

● Viewport matrix not stored explicitly

Transform Pipeline

Transform Pipeline
● OpenGL stores matrices in column-major order
● Matrices are multiplied into the current matrix (multiplication mutates the

current matrix instead of producing a new one)
○ matrix multiplication occurs from the right

● Near and far depths are positive by convention

Back-Face Culling
● Some faces will only have one face ever visible (perhaps the other face is

occluded by other faces), so culling these faces reduces the number of faces
to rasterize.

● To enable back-face culling: glEnable(GL_CULL_FACE);
● To specify which face is the front face: glFrontFace(GL_CCW);

○ GL_CCW and GL_CW are accepted (counterclockwise and clockwise)
○ these are in terms of vertex order in window coordinates
○ default: GL_CCW

● To specify which side to cull: glCullFace(GL_BACK);

Depth Buffering
● Need a way to determine which face is visible when faces occlude each other

○ keep track of depth values per pixel while rasterizing
○ only render when the depth value is smaller than the previous value

● Depth buffer must be initialized when window is created
○ glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

● Must be cleared before rendering:
○ glClearDepth(1000);

glClear(GL_DEPTH_BUFFER_BIT);

Depth Buffering

Shading
● Blinn-Phong shading model:

○

● Need to specify:
○ Material properties: ka, kd, ks, p
○ Light parameters: Ia, I

● Vertex Properties:
○ glVertex3f specifies vertex positions
○ glNormal3f specifies normals

● Same information needed in our raytracer

Material Properties

Light Parameters

Shading

Flat Shading

Fixed Function Limitations
● Can’t do per-pixel shading. Once vertices are specified, OpenGL takes over.
● Can’t do deferred shading (can’t redirect output to an off screen buffer)
● Communication Bottleneck

○ Specify vertices over and over again
○ Data travels from CPU to GPU unnecessarily
○ Can we store this data in the GPU memory?

GPU Buffers
● Can allocate buffers (arrays) in GPU memory to store vertices, indices and

other data

● Buffer not allocated until glBufferData is called
● GL_STATIC_DRAW declares the buffer as read only, allowing the driver to

optimize where it allocates the buffer.

Binding in OpenGL
● glBufferData is not passed the buffer itself
● GL_ARRAY_BUFFER is a binding point
● It can be set to any buffer using glBindBuffer
● OpenGL has many bind points and objects that can be bound

Vertex Array Objects
● Buffer data needs to be interpreted a certain way. We haven’t told OpenGL

what is semantically contained in the GPU buffer.
○ Is the buffer full of vertices? normals? vertices followed by normals?

● Described using vertex array objects
○ Defines the semantics of buffers

Vertex Array Objects

Element Buffers
● Storing each vertex for each triangle is costly and prone to repetition
● Solution: store each vertex only once and refer to them with indices

○ Thus, a triangle would be three indices corresponding to three vertices

● These indices may be stored on the GPU in an element buffer
● Bind a buffer to GL_ELEMENT_ARRAY_BUFFER to use it as an element

buffer

Drawing with Buffers
● Without an element buffer

● With an element buffer

● The appropriate vertex array object and element buffer must be bound

Other Buffers
● Textures: storing images to map onto objects
● Uniform shader variables

○ e.g., an array of light source positions

● Frame Buffers
○ destination for rendering operations
○ useful for deferred shading, shadows, etc.

Fixed Function Limitations
● Can’t do per-pixel shading. Once vertices

are specified, OpenGL takes over.
● Without per-pixel shading, color is

calculated for the vertices and then
interpolated inside the triangle. Our shading
model is not linear!

● With per-pixel shading, color is computed
for each pixel

Programmable Pipeline
● Arbitrary code execution during certain

phases of the pipeline:
○ Vertex processing, fragment processing,

and other pipeline stages
● Some pipeline stages remain fixed:

perspective divide, clipping, rasterization,
depth buffer, …

● Shader programs written in GLSL
○ compiled on the CPU (by graphics drivers)

and uploaded to the GPU

Simplest Vertex Shader
● in defines a vertex attribute
● gl_Position is the position in canonical

view volume
● This shader passes through positions it’s

given

Simplest Fragment Shader
● out defines an output value
● This shader outputs the same color for all

fragments

Compiling Shader Programs

Transform Vertex Shader
● uniform variables are inputs to vertex

shaders
● they have the same value for all vertices

(each vertex shares the same value)

Binding Uniform Variables

Per-Vertex Shader
Vertex Shader Fragment Shader

Flat Shading (Vertex Shader)

Per-Pixel Shading
Vertex Shader Fragment Shader

Other Shaders
● Vertex and fragment shaders are not the only shaders
● Geometry shaders

○ Runs on each primitive, outputs one or more primitives
○ Useful for cube map rendering

● Tessellation shaders
○ Useful for rendering curved surfaces

● Compute shaders
○ Essentially GPGPU code

Further Information
● OpenGL and GLSL Specs

○ http://www.khronos.org/opengl

● Microsoft Docs
○ https://msdn.microsoft.com/en-us/library/windows/desktop/dd374278(v=vs.85).aspx

● Tutorials
○ http://learnopengl.com/

http://www.khronos.org/opengl
http://www.khronos.org/opengl
https://msdn.microsoft.com/en-us/library/windows/desktop/dd374278(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd374278(v=vs.85).aspx
http://learnopengl.com/
http://learnopengl.com/

