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Sampled representations
• How to store and compute with continuous functions?
• Common scheme for representation: samples
write down the function’s values at many points
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Reconstruction
• Making samples back into a continuous function
for output (need realizable method)
for analysis or processing (need mathematical method)
amounts to “guessing” what the function did in between
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Filtering
• Processing done on a function
can be executed in continuous form (e.g. analog circuit)
but can also be executed using sampled representation
• Simple example: smoothing by averaging
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Roots of sampling
• Nyquist 1928; Shannon 1949
famous results in information theory
• 1940s: first practical uses in telecommunications
• 1960s: first digital audio systems
• 1970s: commercialization of digital audio
• 1982: introduction of the Compact Disc
the first high-profile consumer application
• This is why all the terminology has a communications or audio “flavor”
early applications are 1D; for us 2D (images) is important
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Sampling in digital audio
• Recording: sound to analog to samples to disc
• Playback: disc to samples to analog to sound again
how can we be sure we are filling in the gaps correctly?
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave
unsurprising result: information is lost
surprising result: indistinguishable from lower frequency
also was always indistinguishable from higher frequencies
aliasing: signals “traveling in disguise” as other frequencies
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Preventing aliasing
• Introduce lowpass filters:
remove high frequencies leaving only safe, low frequencies
choose lowest frequency in reconstruction (disambiguate)
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Linear filtering: a key idea
• Transformations on signals; e.g.:
bass/treble controls on stereo
blurring/sharpening operations in image editing
smoothing/noise reduction in tracking
• Key properties
linearity: filter(f + g) = filter(f) + filter(g)
shift invariance: behavior invariant to shifting the input

• delaying an audio signal
• sliding an image around

• Can be modeled mathematically by convolution
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Convolution warm-up
• basic idea: define a new function by averaging over a sliding window
• a simple example to start off: smoothing



•  11

Convolution warm-up
• Same moving average operation, expressed mathematically:
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Discrete convolution
• Simple averaging:

every sample gets the same weight
• Convolution: same idea but with weighted average

each sample gets its own weight (normally zero far away)
• This is all convolution is: it is a moving weighted average
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Filters
• Sequence of weights a[j] is called a filter
• Filter is nonzero over its region of support
usually centered on zero: support radius r
• Filter is normalized so that it sums to 1.0
this makes for a weighted average, not just anyold weighted sum
• Most filters are symmetric about 0
since for images we usually want to treatleft and right the same

a box filter
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Convolution and filtering
• Can express sliding average as convolution with a box filter
• abox = […, 0, 1, 1, 1, 1, 1, 0, …]
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Example: box and step
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Convolution and filtering
• Convolution applies with any sequence of weights
• Example: bell curve (gaussian-like) […, 1, 4, 6, 4, 1, …]/16
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And in pseudocode…
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Discrete convolution
• Notation:
• Convolution is a multiplication-like operation
commutative
associative
distributes over addition
scalars factor out
identity: unit impulse e = […, 0, 0, 1, 0, 0, …]

• Conceptually no distinction between filter and signal
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Discrete filtering in 2D
• Same equation, one more index

now the filter is a rectangle you slide around over a grid of numbers
• Commonly applied to images
blurring (using box, using gaussian, …)
sharpening (impulse minus blur)
• Usefulness of associativity
often apply several filters one after another: (((a * b1) * b2) * b3)
this is equivalent to applying one filter: a * (b1 * b2 * b3)
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And in pseudocode…
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original | box blur sharpened | gaussian blur[Philip Greenspun]
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Optimization: separable filters
• basic alg. is O(r2): large filters get expensive fast!
• definition: a2(x,y) is separable if it can be written as:

this is a useful property for filters because it allows factoring:
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Separable filtering

first, convolve with this
second, convolve with this
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Continuous convolution: warm-up
• Can apply sliding-window average to a continuous function just as well
output is continuous
integration replaces summation
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Continuous convolution
• Sliding average expressed mathematically:

note difference in normalization (only for box)
• Convolution just adds weights

weighting is now by a function
weighted integral is like weighted average
again bounds are set by support of f(x)
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One more convolution
• Continuous–discrete convolution

used for reconstruction and resampling
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Continuous-discrete convolution
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Resampling
• Changing the sample rate
in images, this is enlarging and reducing
• Creating more samples:
increasing the sample rate
“upsampling”
“enlarging”
• Ending up with fewer samples:
decreasing the sample rate
“downsampling”
“reducing”
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Resampling
• Reconstruction creates a continuous function
forget its origins, go ahead and sample it
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And in pseudocode…
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Cont.–disc. convolution in 2D
• same convolution—just two variables now

loop over nearby pixels, average using filter weight
looks like discrete filter,but offsets are not integersand filter is continuous
remember placement of filterrelative to grid is variable

31
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Cont.–disc. convolution in 2D
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Separable filters for resampling
• just as in filtering, separable filters are useful
separability in this context is a statement about a continuous filter, rather than a discrete one:

• resample in two passes, one resampling each row and one resampling each column
• intermediate storage required: product of one dimension of src. and the other dimension of dest.
• same yucky details about boundary conditions
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two-stage resampling using a
separable filter
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A gallery of filters
• Box filter
Simple and cheap
• Tent filter
Linear interpolation
• Gaussian filter
Very smooth antialiasing filter
• B-spline cubic
Very smooth
• Catmull-rom cubic
Interpolating
• Mitchell-Netravali cubic
Good for image upsampling



•  36

Box filter
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Tent filter
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Gaussian filter
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B-Spline cubic
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Catmull-Rom cubic
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Michell-Netravali cubic
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Effects of reconstruction filters
• For some filters, the reconstruction process winds up implementing a simple algorithm
• Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point
it is the input point nearest the output point
so output[i, j] = input[round(x(i)), round(y(j))]x(i) computes the position of the output coordinate i on the input grid
• Tent filter (radius 1): linear interpolation
tent catches exactly 2 input points
weights are a and (1 – a)
result is straight-line interpolation from one point to the next
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Properties of filters
• Degree of continuity
• Impulse response
• Interpolating or no
• Ringing, or overshoot

interpolating filter used for reconstruction
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Ringing, overshoot, ripples
• Overshoot
caused bynegative filtervalues
• Ripples
constant in, non-const. out
ripple free when:
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Constructing 2D filters
• Separable filters (most common approach)
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Yucky details
• What about near the edge?
the filter window falls off the edge of the image
need to extrapolate
methods:

• clip filter (black)
• wrap around
• copy edge
• reflect across edge
• vary filter near edge
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Reducing and enlarging
• Very common operation
devices have differing resolutions
applications have different memory/quality tradeoffs
• Also very commonly done poorly
• Simple approach: drop/replicate pixels
• Correct approach: use resampling
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Resampling example
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Reducing and enlarging
• Very common operation
devices have differing resolutions
applications have different memory/quality tradeoffs
• Also very commonly done poorly
• Simple approach: drop/replicate pixels
• Correct approach: use resampling
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1000 pixel width [Philip Greenspun]
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250 pixel width

by dropping pixels gaussian filter

[Philip Greenspun]
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4000 pixel width

box reconstruction filter bicubic reconstruction filter [Ph
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Types of artifacts
• Garden variety
what we saw in this natural image
fine features become jagged or sparkle
• Moiré patterns
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600ppi scan of a color halftone image
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downsampling a high resolution scan
by dropping pixels gaussian filter [He
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Types of artifacts
• Garden variety
what we saw in this natural image
fine features become jagged or sparkle
• Moiré patterns
caused by repetitive patterns in input
produce large-scale artifacts; highly visible
• These artifacts are aliasing just like in the audio example earlier
• How do I know what filter is best at preventing aliasing?
practical answer: experience
theoretical answer: there is another layer of cool math behind all this

• based on Fourier transforms
• provides much insight into aliasing, filtering, sampling, and reconstruction


