Sampling and reconstruction

COMP 575/COMP 770

Spring 2016

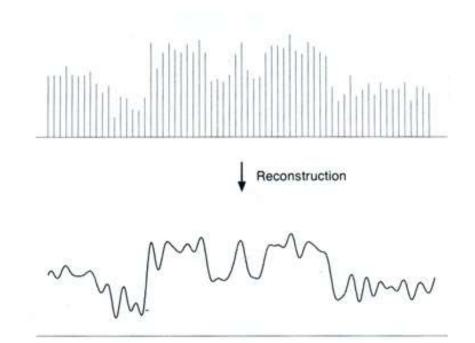
Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples write down the function's values at many points

Sampling

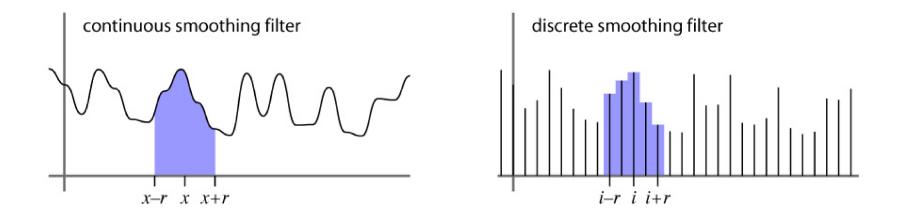
Reconstruction

 Making samples back into a continuous function for output (need realizable method)
 for analysis or processing (need mathematical method)
 amounts to "guessing" what the function did in between



Filtering

- Processing done on a function can be executed in continuous form (e.g. analog circuit) but can also be executed using sampled representation
- Simple example: smoothing by averaging



Roots of sampling

• Nyquist 1928; Shannon 1949

famous results in information theory

- 1940s: first practical uses in telecommunications
- 1960s: first digital audio systems
- 1970s: commercialization of digital audio
- 1982: introduction of the Compact Disc

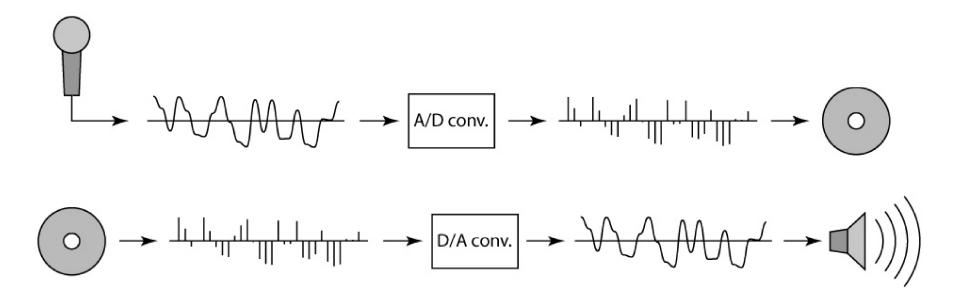
the first high-profile consumer application

 This is why all the terminology has a communications or audio "flavor"

early applications are 1D; for us 2D (images) is important

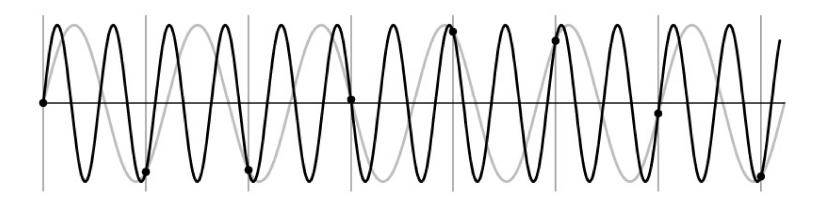
Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again how can we be sure we are filling in the gaps correctly?



Undersampling

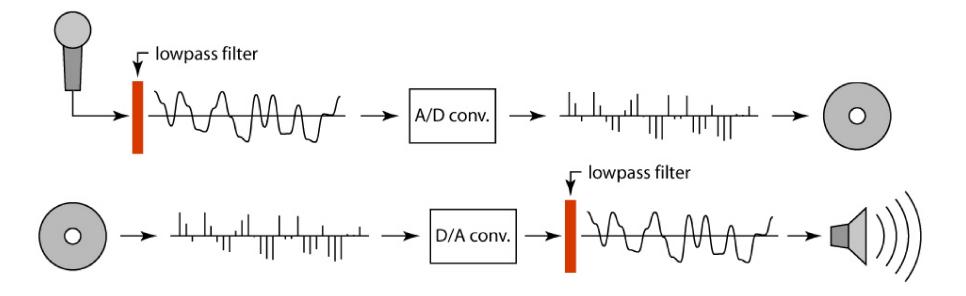
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave unsurprising result: information is lost surprising result: indistinguishable from lower frequency also was always indistinguishable from higher frequencies *aliasing*: signals "traveling in disguise" as other frequencies



Preventing aliasing

• Introduce lowpass filters:

remove high frequencies leaving only safe, low frequencies choose lowest frequency in reconstruction (disambiguate)



Linear filtering: a key idea

Transformations on signals; e.g.:
 bass/treble controls on stereo
 blurring/sharpening operations in image editing
 smoothing/noise reduction in tracking

• Key properties

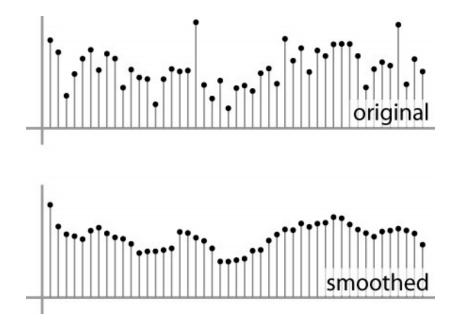
linearity: filter(f + g) = filter(f) + filter(g)

shift invariance: behavior invariant to shifting the input

- delaying an audio signal
- sliding an image around
- Can be modeled mathematically by *convolution*

Convolution warm-up

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing



Convolution warm-up

• Same moving average operation, expressed mathematically:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

Discrete convolution

• Simple averaging:

$$b_{\text{smooth}}[i] = \frac{1}{2r+1} \sum_{j=i-r}^{i+r} b[j]$$

every sample gets the same weight

• Convolution: same idea but with weighted average

$$(a \star b)[i] = \sum_{j} a[j]b[i-j]$$

each sample gets its own weight (normally zero far away)

• This is all convolution is: it is a **moving weighted average**

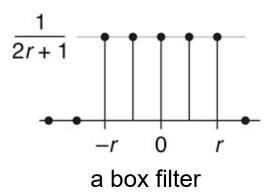
Filters

- Sequence of weights *a*[*j*] is called a *filter*
- Filter is nonzero over its *region of support* usually centered on zero: support radius *r*
- Filter is *normalized* so that it sums to 1.0

this makes for a weighted average, not just any old weighted sum

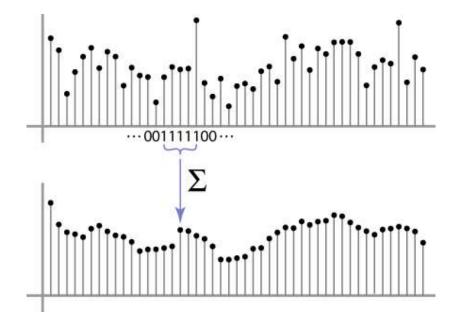
• Most filters are symmetric about 0

since for images we usually want to treat left and right the same

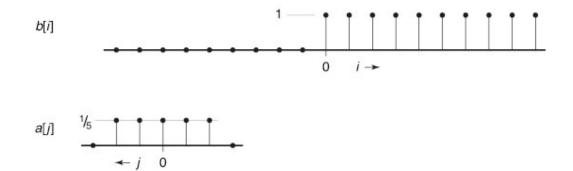


Convolution and filtering

- Can express sliding average as convolution with a box filter
- $a_{\text{box}} = [\dots, 0, 1, 1, 1, 1, 1, 0, \dots]$



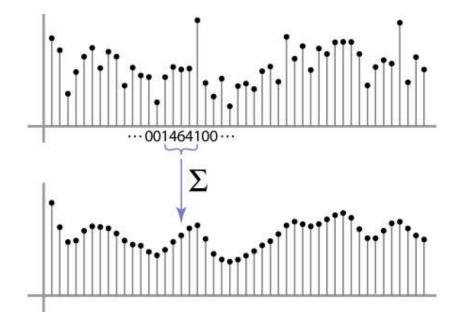
Example: box and step



i i

Convolution and filtering

- Convolution applies with any sequence of weights
- Example: bell curve (gaussian-like) [..., 1, 4, 6, 4, 1, ...]/16



And in pseudocode...

function convolve(sequence a, sequence b, int r, int i)

$$s = 0$$

for $j = -r$ to r
 $s = s + a[j]b[i - j]$
return s

Discrete convolution

- Notation: $b = c \star a$
- Convolution is a multiplication-like operation commutative $a \star b = b \star a$ associative $a \star (b \star c) = (a \star b) \star c$ distributes over addition $a \star (b + c) = a \star b + a \star c$ scalars factor out $\alpha a \star b = a \star \alpha b = \alpha (a \star b)$ identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

 $a \star e = a$

Conceptually no distinction between filter and signal

Discrete filtering in 2D

• Same equation, one more index

$$(a \star b)[i, j] = \sum_{i', j'} a[i', j']b[i - i', j - j']$$

now the filter is a rectangle you slide around over a grid of numbers

- Commonly applied to images blurring (using box, using gaussian, ...) sharpening (impulse minus blur)
- Usefulness of associativity

often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$ this is equivalent to applying one filter: $a * (b_1 * b_2 * b_3)$

And in pseudocode...

function convolve2d(filter2d a, filter2d b, int i, int j) s = 0 r = a.radius for i' = -r to r do for j' = -r to r do s = s + a[i'][j']b[i - i'][j - j']return s

Optimization: separable filters

- basic alg. is $O(r^2)$: large filters get expensive fast!
- definition: $a_2(x,y)$ is separable if it can be written as:

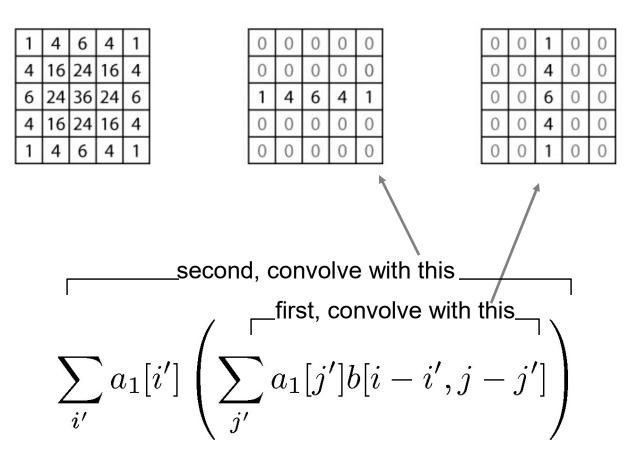
 $a_2[i,j] = a_1[i]a_1[j]$

this is a useful property for filters because it allows factoring:

$$(a_{2} \star b)[i,j] = \sum_{i'} \sum_{j'} a_{2}[i',j']b[i-i',j-j']$$
$$= \sum_{i'} \sum_{j'} a_{1}[i']a_{1}[j']b[i-i',j-j']$$
$$= \sum_{i'} a_{1}[i'] \left(\sum_{j'} a_{1}[j']b[i-i',j-j']\right)$$

Separable filtering

$$a_2[i,j] = a_1[i]a_1[j]$$

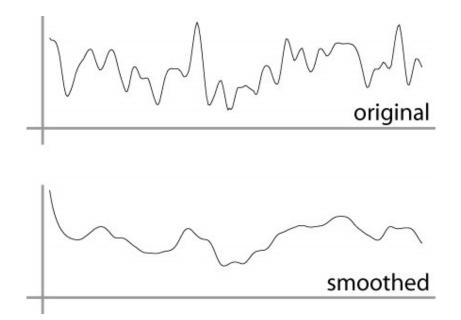


Continuous convolution: warm-up

 Can apply sliding-window average to a continuous function just as well

output is continuous

integration replaces summation



Continuous convolution

• Sliding average expressed mathematically:

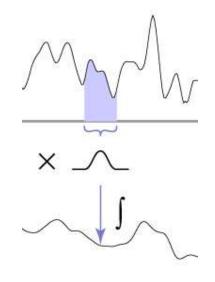
$$g_{\text{smooth}}(x) = \frac{1}{2r} \int_{x-r}^{x+r} g(t) dt$$

note difference in normalization (only for box)

• Convolution just adds weights

$$(f\star g)(x)=\int_{-\infty}^{\infty}f(t)g(x-t)dt$$

weighting is now by a function weighted integral is like weighted average again bounds are set by support of f(x)



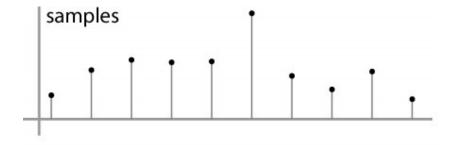
One more convolution

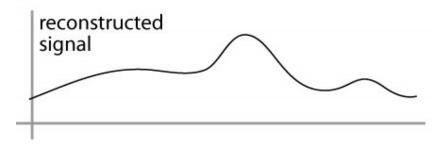
Continuous–discrete convolution

$$(a \star f)(x) = \sum_{i} a[i]f(x-i)$$
$$(a \star f)(x,y) = \sum_{i,j} a[i,j]f(x-i,y-j)$$

used for reconstruction and resampling

Continuous-discrete convolution



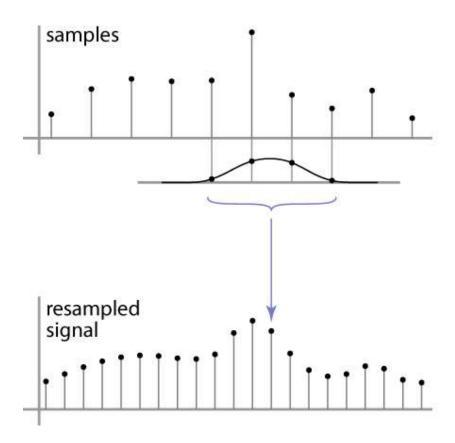


Resampling

- Changing the sample rate in images, this is enlarging and reducing
- Creating more samples:
 increasing the sample rate
 "upsampling"
 "enlarging"
- Ending up with fewer samples:
 decreasing the sample rate
 "downsampling"
 "reducing"

Resampling

• Reconstruction creates a continuous function forget its origins, go ahead and sample it



And in pseudocode...

function reconstruct(sequence a, filter f, real x) s = 0 r = f.radius for $i = \lceil x - r \rceil$ to $\lfloor x + r \rfloor$ do s = s + a[i]f(x - i)return s

Cont.–disc. convolution in 2D

same convolution—just two variables now

$$(a \star f)(x, y) = \sum_{i,j} a[i,j]f(x-i, y-j)$$

loop over nearby pixels, average using filter weight

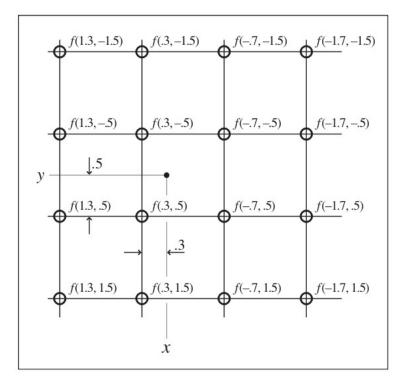
looks like discrete filter, but offsets are not integers and filter is continuous

remember placement of filter relative to grid is variable

•	•		0	•	0		•			
		•	•		0		0	•	0	
						0	•			
	•	•	•	•	•	•	•	•	0	4
	•	/•	•	•	•	•	•			
	•	•	•	•	•	•	•	•	0	
	•	•	•	•_	•	•	•	•		
	ł	•	•	•	•	•	•	• /	0	
	•	•	•	•	•	•	•	•	0	
	•	×	•	•	•	•	•/	•		
	•	•	•	•	•	-	•	•	0	

Cont.–disc. convolution in 2D

$$(a \star f)(x, y) = \sum_{i,j} a[i,j]f(x-i, y-j)$$



Separable filters for resampling

• just as in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a discrete one:

 $f_2(x,y) = f_1(x)f_1(y)$

- resample in two passes, one resampling each row and one resampling each column
- intermediate storage required: product of one dimension of src. and the other dimension of dest.
- same yucky details about boundary conditions

two-stage resampling using a separable filter

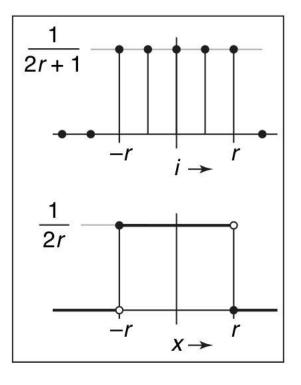
A gallery of filters

- Box filter Simple and cheap
- Tent filter
- Linear interpolation
- Gaussian filter
- Very smooth antialiasing filter
- B-spline cubic Very smooth
- Catmull-rom cubic Interpolating
- Mitchell-Netravali cubic Good for image upsampling

Box filter

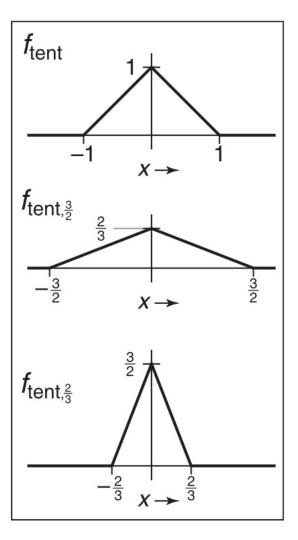
$$a_{\text{box},r}[i] = \begin{cases} 1/(2r+1) & |i| \le r, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_{\text{box},r}(x) = \begin{cases} 1/(2r) & -r \le x < r, \\ 0 & \text{otherwise.} \end{cases}$$

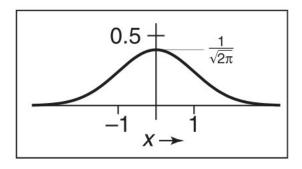


Tent filter

$$f_{\text{tent}}(x) = \begin{cases} 1 - |x| & |x| < 1, \\ 0 & \text{otherwise}; \end{cases}$$
$$f_{\text{tent},r}(x) = \frac{f_{\text{tent}}(x/r)}{r}.$$

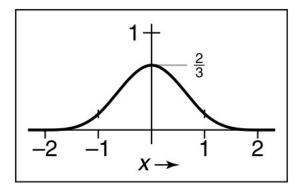


Gaussian filter



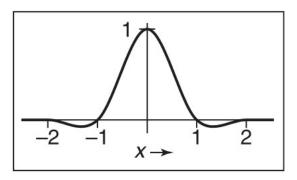
$$f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

B-Spline cubic



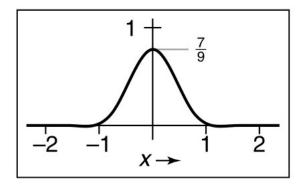
$$f_B(x) = \frac{1}{6} \begin{cases} -3(1-|x|)^3 + 3(1-|x|)^2 + 3(1-|x|) + 1 & -1 \le x \le 1, \\ (2-|x|)^3 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

Catmull-Rom cubic



$$f_C(x) = \frac{1}{2} \begin{cases} -3(1-|x|)^3 + 4(1-|x|)^2 + (1-|x|) & -1 \le x \le 1, \\ (2-|x|)^3 - (2-|x|)^2 & 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

Michell-Netravali cubic



$$\begin{split} f_M(x) &= \frac{1}{3} f_B(x) + \frac{2}{3} f_C(x) \\ &= \frac{1}{18} \begin{cases} -21(1-|x|)^3 + 27(1-|x|)^2 + 9(1-|x|) + 1 & -1 \leq x \leq 1, \\ 7(2-|x|)^3 - 6(2-|x|)^2 & 1 \leq |x| \leq 2, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Effects of reconstruction filters

- For some filters, the reconstruction process winds up implementing a simple algorithm
- Box filter (radius 0.5): nearest neighbor sampling

box always catches exactly one input point

it is the input point nearest the output point

so output[*i*, *j*] = input[round(*x*(*i*)), round(*y*(*j*))]

x(i) computes the position of the output coordinate *i* on the input grid

• Tent filter (radius 1): linear interpolation

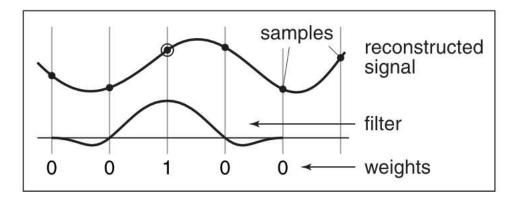
tent catches exactly 2 input points

weights are a and (1 - a)

result is straight-line interpolation from one point to the next

Properties of filters

- Degree of continuity
- Impulse response
- Interpolating or no
- Ringing, or overshoot



interpolating filter used for reconstruction

Ringing, overshoot, ripples

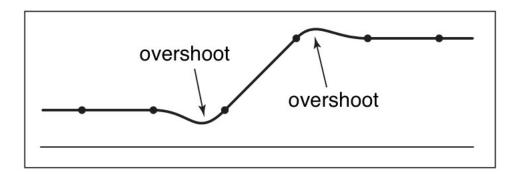
• Overshoot caused by negative filter

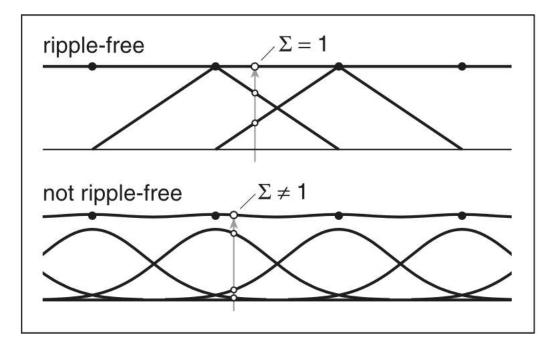
values

Ripples

constant in, non-const. out ripple free when:

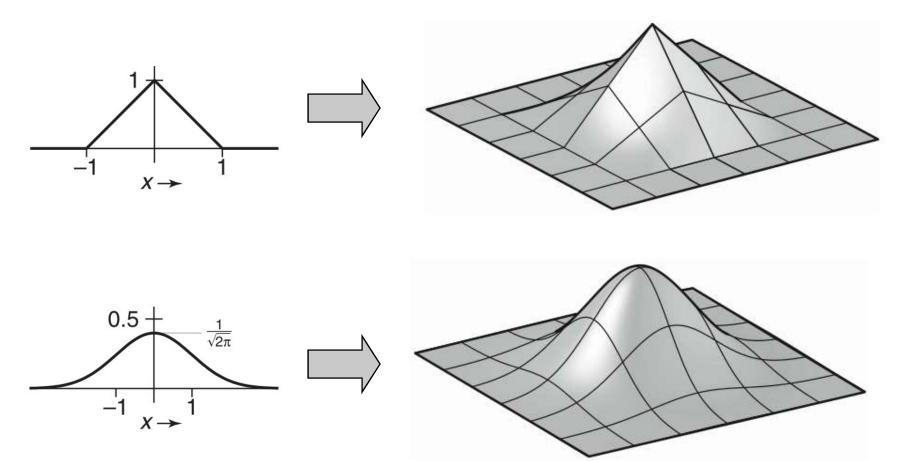
$$\sum_{i} f(x+i) = 1 \quad \text{for all } x.$$





Constructing 2D filters

• Separable filters (most common approach)



Yucky details

• What about near the edge?

the filter window falls off the edge of the image

need to extrapolate

methods:

- clip filter (black)
- wrap around
- copy edge
- reflect across edge
- vary filter near edge

[Philip Greenspun]

Reducing and enlarging

- Very common operation devices have differing resolutions applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

Resampling example

9 —	•	•	٠	•	•	•	•	•	٠	•
8 —	•	•	٠	•	• >	< •><	* •	٠	•	•
7 —	•	•	•	80	• >	< •×	ו	•		•
6 —	٠	•	٠	•	• 3	< •×	*• + ¥•	٠		
5 —	•	÷	•	٠	• 5	• • *	* •	•	٠	٠
4 —	•	•	•	•	• >	< •×	*•	٠	•	•
3 —	•	•	•	•	•	•	•	٠	٠	٠
2 —	٠	•	•	•	•	•	•	•	•	•
1 —	•	٠	•	•	•	•	•	•	٠	•
0 —	•	•	•	•	•	•	•	•	٠	٠
	 0	 1	 2	 3	 4	 5	 6	 7	 8	 9

Reducing and enlarging

- Very common operation
 devices have differing resolutions
 applications have different memory/quality tradeoffs
- Also very commonly done poorly
- Simple approach: drop/replicate pixels
- Correct approach: use resampling

1000 pixel width

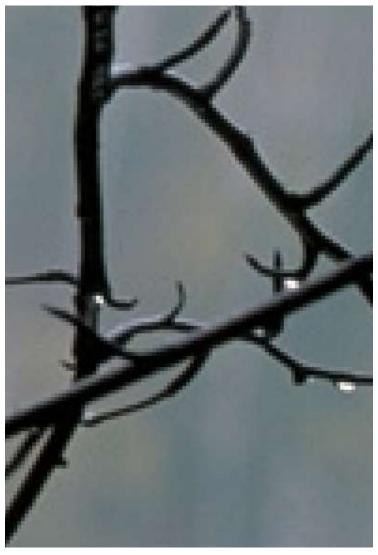
[Philip Greenspun]

[Philip Greenspun]

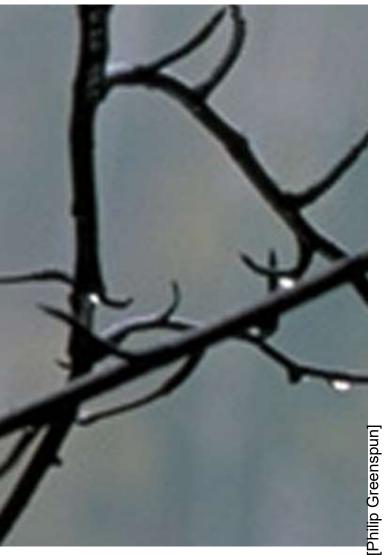
by dropping pixels

gaussian filter

250 pixel width



box reconstruction filter



bicubic reconstruction filter

4000 pixel width

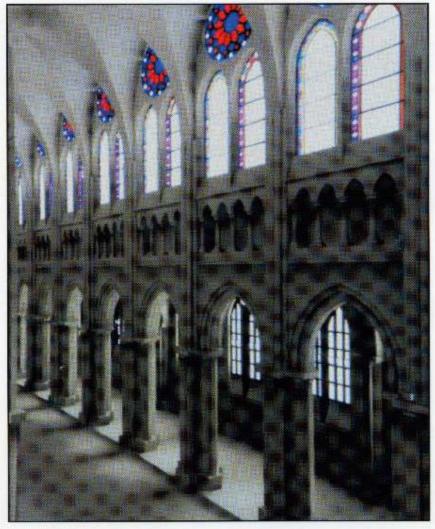
Types of artifacts

Garden variety

what we saw in this natural image fine features become jagged or sparkle

• Moiré patterns

600ppi scan of a color halftone image



by dropping pixels



gaussian filter

downsampling a high resolution scan

Types of artifacts

• Garden variety

what we saw in this natural image fine features become jagged or sparkle

• Moiré patterns

caused by repetitive patterns in input produce large-scale artifacts; highly visible

- These artifacts are *aliasing* just like in the audio example earlier
- How do I know what filter is best at preventing aliasing? practical answer: experience

theoretical answer: there is another layer of cool math behind all this

- based on Fourier transforms
- provides much insight into aliasing, filtering, sampling, and reconstruction