Sampling and reconstruction

COMP 575/COMP 770
Spring 2016



Sampled representations

 How to store and compute with continuous functions?

« Common scheme for representation: samples
write down the function’s values at many points

WWMNWU\/‘”“’M .

l sampling

[FVDFH fig.14.14b / Wolberg]

.
N



Reconstruction

« Making samples back into a continuous function
for output (need realizable method)

for analysis or processing (need mathematical method)
amounts to “guessing” what the function did in between

l Reconstruction

W\j’% AN

[FVDFH fig.14.14b / Wolberg]

.
w



Filtering

* Processing done on a function

can be executed in continuous form (e.g. analog circuit)

but can also be executed using sampled representation

« Simple example: smoothing by averaging

continuous smoothing filter

| | |
X—r X x+r

discrete smoothing filter

| |

i-r i i+r



Roots of sampling

* Nyquist 1928; Shannon 1949

famous results in information theory

« 1940s: first practical uses in telecommunications
* 1960s: first digital audio systems

« 1970s: commercialization of digital audio

* 1982: introduction of the Compact Disc

the first high-profile consumer application

« This is why all the terminology has a communications or audio
“flavor”

early applications are 1D; for us 2D (images) is important



Sampling in digital audio

* Recording: sound to analog to samples to disc

« Playback: disc to samples to analog to sound again
how can we be sure we are filling in the gaps correctly?

RAAViicivaling

A/D conv.

@ — Aty —

— Lyt —~ @)

- i)



Undersampling

« What if we "“missed” things between the samples?

« Simple example: undersampling a sine wave
unsurprising result: information is lost

surprising result: indistinguishable from lower frequency
also was always indistinguishable from higher frequencies
aliasing: signals “traveling in disguise” as other frequencies

AAANAA AN
TRTATRVATATRTAVSTATATRTA




Preventing aliasing

 Introduce lowpass filters:

remove high frequencies leaving only safe, low frequencies

choose lowest frequency in reconstruction (disambiguate)

Iowpass filter

I

© - gt

A/D conv.

D/A conv.

— byt — @)

Iowpass filter

~»I>o%%%w ~a)



Linear filtering: a key idea

« Transformations on signals; e.g.:
bass/treble controls on stereo
blurring/sharpening operations in image editing
smoothing/noise reduction in tracking

« Key properties
linearity: filter(f + g) = filter(f) + filter(g)

shift invariance: behavior invariant to shifting the input
« delaying an audio signal
 sliding an image around

« Can be modeled mathematically by convolution



Convolution warm-up

* basic idea: define a new function by averaging over a

b
window

« a simple example to start off: smoothing

slidin



Convolution warm-up

« Same moving average operation, expressed mathematically:

1



Discrete convolution

 Simple averaging:
1 1+r
bsmooth[i] — Z b[]]

2r+1 .

j=i—r
every sample gets the same weight

« Convolution: same idea but with weighted average

(a*b)| z]—Za i — 7]

each sample gets its own weight (normally zero far away)

« This is all convolution is: it is a moving weighted average

*12



Filters

« Sequence of weights a[j] is called a filter

 Filter is nonzero over its region of support
usually centered on zero: support radius r

* Filter is normalized so that it sums to 1.0

this makes for a weighted average, not just any
old weighted sum

* Most filters are symmetric about O

since for images we usually want to treat
left and right the same 2r+1 { { { [ [
.-

a box filter

*13



Convolution and filtering

« Can express sliding average as convolution with a box filter
* apox =[..-.0,1,1,1,1,1,0,..]




Bl

Example: box and step

*15



Convolution and filtering

« Convolution applies with any sequence of weights
« Example: bell curve (gaussian-like) [..., 1,4,6,4,1, ...]/16




And in pseudocode...

function convolve(sequence a, sequence b, int r, int ¢ )
g =1
for j = —r tor
s = s + alj]bli — j]
return s

17



Discrete convolution

« Notation: b = cx a

« Convolution is a multiplication-like operation

commutative axb=0bxa
associative ax(bxc) = (axb)xc
distributes over addition a % (b 1 C) —axb+axc
scalars factor out aa*b=axab= a(a * b)
identity: unit impulse e =1...,0,0,1,0,0, ...]

axe=a

« Conceptually no distinction between filter and signal

*18



Discrete filtering in 2D

« Same equation, one more index

(a*b)[i,5] =Y ali’,j1bli —',j — j']

i’
now the filter is a rectangle you slide around over a grid of numbers

« Commonly applied to images
blurring (using box, using gaussian, ...)
sharpening (impulse minus blur)

« Usefulness of associativity
often apply several filters one after another: (((a * b) * b,) * bs)
this is equivalent to applying one filter: a * (b, * b, * b,)

*19



And in pseudocode...

function convolve2d(filter2d a, filter2d b, int ¢, int j)
s =10
r = a.radius

for i’ = —r tor do
for j' = —rtordo
s =8+ ald][5]bli — ][ — 4]
return s

*20



Philip Greenspun
original A |y box blur




Optimization: separable filters

« basic alg. is O(r?): large filters get expensive fast!

- definition: a,(x,y) is separable if it can be written as:

azlt, j] = aililay|y]

this is a useful property for filters because it allows factoring:

(a2 *b)|1, 7] = ZZ(IQ i, 516l — 1,5 — 4]
—Zzal aa[j']bli =i, 5 = 5]

*22



Separable filtering

16(24

16

24136

24

16|24

16

—s|lalo|s|=

—s|alo|s|=

0

0

0

0

0

010101010 0
010|0]01]0 0
1(4]16(4]1 0
010101010 0
010101010 0

0

0

0

second, convolve with this

al|lala|a]=

0

0

\

/

first, convolve with thls

> oali] | Y el Ibli — .5 — 5

?:/

j/

*23



Continuous convolution: warm-up

« Can apply sliding-window average to a continuous function just
as well

output is continuous
integration replaces summation

I|'.'I . I|r |

'| / / \ Ill'n"-. A N _\'-. | \ .
u i HHJ '\_\". f/_\‘ IR L/n",H r”\“lr AY v H\/’/\J /
\/ V)

original

S N

smoothed

*24



Continuous convolution

« Sliding average expressed mathematically

1 x+r
gsmooth(x) — 5/ g(t)dt

—r
note difference in normalization (only for box)

« Convolution just adds weights

(f*g)(@ f f(t)g(z —t)dt

VAvAl ,_\J,u"l |
/ H'v'ﬂ“x [ Ar
weighting is now by a function ” V. VY
weighted integral is like weighted average —
again bounds are set by support of f(x) X N\

*25



One more convolution

 Continuous—discrete convolution

(a* f)(z)

(a* f)(z,y)

= Za[i]f(:c — i)

§:a%3 (x— i,y — j)

used for reconstruction and resampling

*26



Continuous-discrete convolution

samples

reconstructed

*27



Resampling

« Changing the sample rate
in images, this is enlarging and reducing

« Creating more samples:
increasing the sample rate
“upsampling”

“enlarging”

« Ending up with fewer samples:
decreasing the sample rate
“‘downsampling”

“reducing”

*28



Resampling

 Reconstruction creates a continuous function
forget its origins, go ahead and sample it

samples
meampled o
L




And in pseudocode...

function reconstruct(sequence a, filter f, real x)
$= U
o= 1. radius
fori=|z—r|to|x+r]|do
s=s+ali|f(z —1)
return s

*30



Cont.—disc. convolution in 2D

« same convolution—just two variables now

(ax f)(@,y) =) ali,jlf(z—i,y—j)
,J
loop over nearby pixels,
average using filter weight

looks like discrete filter, —

but offsets are not integers
and filter is continuous o /o e e e o e
remember placement of filter /i Rall KA R RS RS S0
relative to grid is variable r e 5w ._F o oo )
» . . @ - . . .
\
- . . B B . -

*31



Cont.—disc. convolution in 2D

(a* f)(@,y) =Y ali,jlf(x—i,y—j)

2,]

f(13,-15) ,},{(,3.—1.5) S f7,-15) 4 fel7,-15)

L

FanY
3
o

{]
FanY

Af13-5 | f(3-5)
L

15

y .

L /(13,5 L f(3.5)
Ly L

1

[ f7,-5) )| f17,-5)
o

Fa
A
{]
FanY
FanY
\

}f(—.?. N LS

FanY
Fa
FanY
{".

3
— =

.}f(l-?’-. 15) L f(3,15)

| f=7.15) | f-17,15)
NS L

FanY
Py
Fa
pY




Separable filters for resampling

 just as in filtering, separable filters are useful

separability in this context is a statement about a continuous filter, rather than a
discrete one:

fa(z,y) = f1(z) f1(y)

* resample in two passes, one resampling each row and one
resampling each column

 intermediate storage required: product of one dimension of src.

and the other dimension of dest.

* same yucky details about boundary conditions

*33



[Philip Greenspun]

two-stage resampling using a
separable filter

*34



A gallery of filters

« Box filter
Simple and cheap

o Tent filter

Linear interpolation

« Gaussian filter

Very smooth antialiasing filter
« B-spline cubic

Very smooth

« Catmull-rom cubic
Interpolating

« Mitchell-Netravali cubic
Good for image upsampling

*35



Abox,r [Z]

|

fbox,r(x) =

1/(2r +1)
0

Box filter

i <,

otherwise.

—r < &< T

1/(2r)
0 otherwise.

*36



ftent(-fl?)

1 — |x|
0

ftent,r (ZU)

Tent filter

2| < 1,

otherwise;

— ftent(il?/’r‘)

wno—

.37



Gaussian filter

*38



fB(z)

i

B-Spline cubic

X

X —>

2

(—3(1 - |z|)® +3(1 - |z)%2+3(1 — |z|) + 1
(2 - |z|)°

0

3

-1<z<1,
1< |z <2,

otherwise.

*39



fe(z)

o

Catmull-Rom cubic

(—3(1 — |z|)® + 4(1 - |=])? + (1 - |=|)
(2 - |z])® - (2 - |z|)?
0

\

-1<z<1,
1< |z <2,

otherwise.

*40



fu(z)

Michell-Netravali cubic

%fﬂ(iﬂ) + %fc(fﬂ)

. (—21(1 — |z|)® +27(1 — |=])2 + 9(1 — |z|) + 1

o o 3 o 2
18*;(? z)” — 6(2 — |z|)

\

—1 <z <1,
1< |z] <2,

otherwise.

‘41



Effects of reconstruction filters

* For some filters, the reconstruction process winds up
iImplementing a simple algorithm
« Box filter (radius 0.5): nearest neighbor sampling
box always catches exactly one input point
it is the input point nearest the output point
so output[i, /] = input[round(x(i)), round(y()))]
x(/) computes the position of the output coordinate i on the input grid
« Tent filter (radius 1): linear interpolation
tent catches exactly 2 input points

weights are a and (1 — a)
result is straight-line interpolation from one point to the next

*42



Properties of filters

Degree of continuity
Impulse response
Interpolating or no

Ringing, or overshoot

samples

NN

TN

e, | T |

reconstructed
signal

filter

0 0 1 0 0 <——— weights

interpolating filter used for reconstruction

*43



Ringing, overshoot, ripples

 Qvershoot

caused by
negative filter
values

* Ripples

constant in,
non-const. out

ripple free when:

Zf(:r:+z) =1 forall z.

1

overshoot

not ripple-free SE#E

g —— O e

SO O.©

“44



Constructing 2D filters

« Separable filters (most common approach)

SN =

N =

*45



Yucky details

 What about near the edge?
the filter window falls off the edge of the image
need to extrapolate

methods:
« clip filter (black)
e wrap around
* copy edge
 reflect across edge
 vary filter near edge

[Philip Greenspun]

‘46



Reducing and enlarging

* Very common operation
devices have differing resolutions
applications have different memory/quality tradeoffs

« Also very commonly done poorly
« Simple approach: drop/replicate pixels

« Correct approach: use resampling

47



Resampling example

L L L L L L L L L

L L ® L * N w e L L

® [ L ] . e X e . L ] [
+ + +

[ [ [ ] ® [ -)f- I.'i 5__. [ ®

L] . L L ‘:t.-;%' *‘l L L]

L . L] L * X =X re ® L
L] L L] L] L] L L] L] L]
L] L] L L] & L L ] L ] L]
® . L] ® L ® L] L] ®
® . . L ® . L] L] ®

‘48



Reducing and enlarging

* Very common operation
devices have differing resolutions
applications have different memory/quality tradeoffs

« Also very commonly done poorly
« Simple approach: drop/replicate pixels

« Correct approach: use resampling

*49



1000 pixe] width [Philip Greenspun]

*50




by dropping pixels

250 pixel width

gaussian filter

ilip Greenspun]



box reconstruction filter bicubic reconstruction filter

4000 pixel width

[Philip Greenspun

*52



Types of artifacts

* Garden variety
what we saw in this natural image
fine features become jagged or sparkle

* Moiré patterns

*53



600ppi scan of a color halftone image

.
()
>
o
(&)
[
O
©
1)

o
[
=
®
[}

*54



gaussian filter

by dropping pixels

downsampling a high resolution scan

*55



Types of artifacts

* Garden variety
what we saw in this natural image
fine features become jagged or sparkle

* Moiré patterns
caused by repetitive patterns in input
produce large-scale artifacts; highly visible

» These artifacts are aliasing just like in the audio example earlier

 How do | know what filter is best at preventing aliasing?
practical answer: experience

theoretical answer: there is another layer of cool math behind all this
* based on Fourier transforms
» provides much insight into aliasing, filtering, sampling, and reconstruction

*56



