
Hybrid Long-Range Collision Avoidance for Crowd Simulation

Abhinav Golas∗1, Rahul Narain†2, and Ming Lin‡1

1University of North Carolina at Chapel Hill
2University of California, Berkeley

Figure 1: Results with no lookahead (left) and lookahead (right) for 2 demo scenarios. Crossing: (Top) shows two groups of agents heading
to diametrically opposite ends t = 10s, note how bigger group parts to allow smaller group through with lookahead. Circle: (Bottom) shows
agents on the edge of a circle heading to diametrically opposite points t = 40s, note significantly improved progress with lookahead

Abstract

Local collision avoidance algorithms in crowd simulation often
ignore agents beyond a neighborhood of a certain size. This cutoff
can result in sharp changes in trajectory when large groups of agents
enter or exit these neighborhoods. In this work, we exploit the insight
that exact collision avoidance is not necessary between agents at such
large distances, and propose a novel algorithm for extending existing
collision avoidance algorithms to perform approximate, long-range
collision avoidance. Our formulation performs long-range collision
avoidance for distant agent groups to efficiently compute trajectories
that are smoother than those obtained with state-of-the-art techniques
and at faster rates.

Another issue often sidestepped in existing work is that discrete
and continuum collision avoidance algorithms have different regions
of applicability. For example, low-density crowds cannot be mod-
eled as a continuum, while high-density crowds can be expensive
to model using discrete methods. We formulate a hybrid technique
for crowd simulation which can accurately and efficiently simulate
crowds at any density with seamless transitions between contin-

∗golas@cs.unc.edu
†narain@eecs.berkeley.edu
‡lin@cs.unc.edu

uum and discrete representations. Our approach blends results from
continuum and discrete algorithms, based on local density and ve-
locity variance. In addition to being robust across a variety of group
scenarios, it is also highly efficient, running at interactive rates for
thousands of agents on portable systems.
CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Physically based modeling
Keywords: crowd simulation, collision avoidance, lookahead,
hybrid algorithms

1 Introduction

Long-range vision is critical to human navigation: in addition to
avoiding nearby obstacles, the human visual system looks ahead to
perform dynamic global planning and local navigation. By consider-



ing the distribution of other pedestrians and obstacles over a large
distance, people can anticipate overcrowded regions and navigate
around them, thereby finding an efficient, uncongested path to their
goals. Most existing work addresses either global navigation around
static obstacles or local avoidance of collisions with nearby pedes-
trians, but often neglects the importance of long-range collision
avoidance.

The state of the art for this topic is a synthetic-vision based steering
algorithm proposed by Ondrěj et al. [2010]. This method explores
a vision-based approach for collision avoidance among walkers.
It offers global efficiency among the agents in terms of overall
walking time. Achieving reasonable performance is perhaps the
key challenge of using this approach for large-scale, interactive
applications. Even a parallel, GPU-based implementation cannot
handle more than 200 agents at interactive rates. Complementing
this approach, our work addresses this problem by offering a simple
and efficient alternative that naturally extends existing collision
avoidance algorithms to provide long-range look-ahead.

Collision avoidance algorithms can be broadly classified into two
categories: discrete and continuum – based on the underlying repre-
sentation of crowds. We formulate and demonstrate our look-ahead
approach for both classes of algorithms, as the problem is not re-
stricted to either class. Though our demonstration in this paper
uses specific examples of continuum and discrete algorithms, our
technique can be easily applied and generalized to other collision
avoidance algorithms.

The use of continuum and discrete algorithms for collision avoid-
ance also brings up a common issue with either class, namely their
applicability to different ranges of agent density. Continuum algo-
rithms (e.g. [Narain et al. 2009]) are ideally suited for medium to
high densities, since the continuum assumption does not hold for
sparse crowds. On the other hand, though discrete algorithms can
be applied at any density, their computational costs escalate at high
densities, along with numerical issues in some cases. This insight
suggests the need for an inexpensive hybrid scheme that blends both
approaches for efficient crowd simulation over the entire spectrum of
crowd densities. Such a scheme should choose the most suitable un-
derlying algorithm for a particular simulation domain, especially for
problem cases where either approach can likely cause instabilities
or other computational issues in scenarios of high or low densities,
high variance of agent velocities, etc.

To address these problems, this paper introduces the following main
results:

• A novel approach for approximate long-range collision avoid-
ance that can be used with discrete or continuum algorithms
with minimal increase in computational costs

• A hybrid algorithm that utilizes existing continuum and dis-
crete collision avoidance algorithms to efficiently compute
smooth local collision avoidance responses

Our results show significant improvements in crowd progress with
minor increases in computational costs In Fig. 1, we demonstrate our
approach on two scenarios, where improvements in crowd behavior
and progress are seen with less than 3x computational overhead. Our
approach is able to perform interactive long-range steering for both
large, dense crowds and sparsely populated scene, but also achieve
interactive rates on a mobile platform.

2 Background

We model a crowd as a set of agents, each of which has a specified
goal position that it attempts to reach while avoiding collisions
with other agents and with static obstacles in the environment. The

standard crowd simulation loop that we and others often use is as
follows:

1. For each agent, perform global planning to find a path to the
goal that avoids collisions with static obstacles while ignoring
other agents. Set the preferred velocity vp along the direction
of the initial segment of the path.

2. For each agent, perform local collision avoidance (LCA) to
steer the preferred velocity vp away from collisions with other
agents, yielding the actual velocity v that the agent moves
with.

Below, we briefly discuss some of the prior work relating to these
two steps.

Most algorithms for global planning represent the connectivity of
free space in the environment as a graph, and perform search queries
for each agent to determine a collision-free path [Funge et al. 1999;
Bayazit et al. 2002; Kamphuis and Overmars 2004; Lamarche and
Donikian 2004; Pettré et al. 2005; Sung et al. 2004; Sud et al. 2007].
We do not diverge from previous work in this aspect.

A variety of models have been proposed for local collision avoidance
among agents. These may use either discrete or continuum repre-
sentations of the crowd. In discrete models, each agent considers
other agents as individual obstacles, and attempts to avoid all of
them simultaneously. Collision avoidance in this context can be
formulated in terms of repulsion forces between agents [Heigeas
et al. 2003; Lakoba et al. 2005; Sugiyama et al. 2001; Sud et al.
2007], or geometrically based algorithms [Fiorini and Shiller 1998;
Feurtey 2000; Sud et al. 2008]; the state of the art involves treating
possible collisions as obstacles in velocity space [van den Berg et al.
2008a; van den Berg et al. 2008b; Guy et al. 2009; van den Berg
et al. 2009]. As considering the interaction of all pairs of agents be-
comes expensive in large crowds, such methods typically only take
into account neighboring agents that lie within a specified radius,
limiting the amount of lookahead possible.

In a continuum-based approach, one first obtains from the set of
agents a density field and a velocity field by accumulating the agents’
positions and velocities on a background grid. This smoothed rep-
resentation can then be used to compute the ideal motion of agents
while avoiding regions of high density. The method of Treuille et
al. [2006] performs a global solve over the obtained density and
velocity fields, giving compelling results including long-range con-
gestion avoidance effects. However, its computational cost increases
steeply with the number of distinct goals in the simulation, mak-
ing this approach unsuitable for interactive crowd simulation where
agents may have many diverse goals. Narain et al. [2009] propose a
technique that prevents overcrowding in highly dense crowds, but
it relies on purely local information and thus cannot plan around
congestion at a large distance.

Our approach aims to extend some of the existing work in LCA
algorithms to support long-range collision avoidance queries. We
accomplish this through the simple yet effective approach of extrap-
olating agents’ motion into the future. Our algorithm is described
in section 3, and we demonstrate its application to continuum and
discrete algorithms in section 3.1 and section 3.2. Further, using
discrete models alone can be significantly expensive in dense crowds,
while continuum models are poorly suited to representing the motion
of sparse agents. In section 4, we propose a hybrid algorithm that
blends results from continuum and discrete algorithms, producing
consistently realistic results for both low and high densities under
various velocity conditions. We demonstrate the advantages of our
proposed techniques with examples in section 5, and offer some
conclusions and avenues for future work in section 6.



Figure 2: Effect of extrapolation in time from x = 0, t = 0 to
x = 4, t = i∆t. Dotted line indicates effective radius (P ≥ 0.4)
of agent for collision avoidance, while spread of gaussian curve
indicates splatting area for density field creation

3 Lookahead for Long-Range Collision
Avoidance

In this section, we describe our approach for efficiently computing
long-range collision avoidance for both continuum-based and dis-
crete agent-based crowd models. The problem can be summarized
as follows: For each agent with a given preferred velocity vp (as
computed by the global planning stage), we wish to find an updated
velocity v close to the preferred velocity vp that avoids congestion
in front of the agent at a range of distances from far to near, and also
avoids collisions with neighboring agents. Influences from nearer
agents should receive priority; that is, the agent should not divert
itself to collide with a nearby agent in trying to avoid congestion
farther away.

Given the extensive amount of already existing work on local col-
lision avoidance algorithms, our aim is to take advantage of these
existing techniques to solve the problem of long-range collision
avoidance. In this paper, we propose a general approach for decom-
posing long-range collision avoidance into a sequence of simple
LCA queries. Thus, our algorithm can re-use existing LCA algo-
rithms with minimal increase in computation and coding effort. We
show how to apply this approach to both the discrete and continuum
settings, resulting in efficient algorithms for long-range collision
avoidance in both cases. The crux of the idea lies in evaluating
LCA queries not only on the current state of the crowd, but on its
estimated at a series of future times, enabling greater lookahead
while using only local operations.

When an agent plans its long-term motion, it needs to estimate
the motion of other agents over a large time interval into the future.
While the future motions of other agents are of course unknown, they
can be estimated with some degree of confidence using the agents’
current velocities. To reflect the uncertainty in this estimation, we
treat an agent’s predicted location in the future not directly as a point,
but as a probability distribution representing the expected probability
of finding the agent at a given position. Intuitively, one can think
of this as a travelling “blob” of probability, whose center x(t) is
linearly extrapolated from the agent’s current position and velocity,
and whose spread σ(t) gradually expands over time, reflecting the
increasing uncertainty as one looks further in the future.

In the continuum representation of the crowd, this has the effect
of smoothing out the influence of any agent on the crowd density
field, which enlarges the distance over which it influences the motion
of other agents while simultaneously attenuating the magnitude of
its effect. Thus, when an agent performs a short lookahead, only
its nearby agents are significantly influential, while over a large
lookahead, it only sees an smoothed out density field that averages

over many agents across a large area. In the discrete model, an
agent is treated as a rigid, impenetrable “blocker” of fixed radius.
When the agent position is uncertain, we consider a point to be
blocked by the agent if the probability that the agent covers that
point is at least a certain threshold p. As can be seen in Fig. 2, as
the uncertainty increases, the effective size of the blocker decreases.
This has the desirable effect that agents planning far into the future
are not excessively hindered by the estimated motion of other agents,
given that the latter is unreliable.

With this model for uncertainty, we can formulate the basic
lookahead algorithm for long-range collision avoidance. The
algorithm starts with the preferred velocities vp obtained from
the global planning stage, and performs a number of iterations
i = imax, imax−1, . . . , 0 with decreasing time horizons ∆ti =
2i−1∆t1. In each iteration, we extrapolate the state of the crowd by
a time interval ∆ti into the future, perform an LCA query (with un-
certainty) using the preferred velocity, and then replace the preferred
velocity with the result of the LCA, as illustrated in Fig 3. In the last
iteration, we set the lookahead ∆t0 to zero, so that we perform the
standard LCA with no uncertainty, and thus maintain the collision
avoidance guarantees of the underlying LCA.

With this scheme, agents are sampled in a larger radius than in the
standard LCA query, and extrapolated queries are biased towards the
direction of motion, providing lookahead. Our approach smoothly
merges the effects of distant and nearby avoidance considerations.
Congestion avoidance with a long time horizon takes place in earlier
levels, influencing the final result by updating the preferred velocity;
nevertheless, this can still be overriden if needed to avoid imminent
collisions with nearby agents, which are considered later in the
process.

Figure 3: Effect of lookahead. Note how lookahead allows the
orange agent to see the approaching crowd and adjust its velocity
from preferred velocity vp to v by incorporating information from
the future crowd state at time t+ ∆t



The algorithm is defined formally in Fig. 4, where we denote by v =
A(vp, vc, x, ρ) an LCA query performed for an agent at position x
with current velocity vc and preferred velocity vp in a region of local
density ρ, producing a collision-free velocity v. In the following

For each leaf node p
• Foreach level i in range imax to 0 DO

1. Determine future state of crowd xi = x+ vc∆ti
2. Solve local collision avoidance problem v =
A(vp, vc, xi, ρi)

3. Update preferred velocity vp = v
• END Foreach

Figure 4: Lookahead Algorithm using LCA algorithm A

subsections, we apply our generic long-range collision avoidance
algorithm to two examples of LCA algorithms, one continuum-based
and one discrete, showing the broad applicability of our technique.
We also describe some optimizations that are possible in the specific
cases.

3.1 Continuum Lookahead

Continuum representations treat the crowd as a continuous distri-
bution of density ρ and velocity v over space, through which any
given agent must navigate. The knowledge of the density distribu-
tion enables us to determine congestion directly as regions of high
density. It is well known that pedestrians walk slower in regions
of high density [Fruin 1971], a fact that can be formalized into a
graph known as the fundamental diagram relating density, ρ, to
maximum walking speed: vmax = f(ρ) Therefore, agents should
navigate around overcrowded regions to avoid lowering their speed
and maximize their rate of progress towards their goals. In this
section, we first describe a simple algorithm that uses this idea to
avoid congestion over a short time horizon, then extend it to look
much farther in time using our long-range approach.

Consider an agent that has a preferred velocity vp pointing towards
of the goal. Suppose over the planning time horizon ∆t, the agent
maintains a constant heading along a chosen direction v̂ and walks
at the maximum speed allowed by the fundamental diagram f . Then
to first order, the density it passes through will change at a rate of
fv̂ · ∇ρ, and so its displacement after time ∆t will be

d(∆t) = fv̂∆t+
1

2
(fv̂ · ∇ρ)f ′v̂∆t2, (1)

where f and f ′ are evaluated at the density at the current position.
We choose v̂ to maximize the progress towards the goal, vp · d(∆t).
This formulation reduces to the following optimization problem,

max
v̂

(
vp · v̂ +

f ′∆t

2
(v̂ · ∇ρ)(vp · v̂)

)
‖v‖ ≤ 1. (2)

We can solve this problem using projected gradient descent, with the
direction of the current velocity as the initial guess; this converges in
less than ten iterations on average. This simple approach produces
excellent avoidance results with maximal progress while still being
computationally inexpensive. Though similar in spirit to [Narain
et al. 2009], it avoids the need to calculate a global pressure to exert
forces.

Before formulating the lookahead algorithm for continuum crowds,
we first need to estimate the future densities of the crowd. In ac-
cordance with the uncertainty model, extrapolation further into the
future requires that each agent’s contribution to the density field be
spread out over larger and larger areas, which can become inefficient

with the traditional “splatting” approach. Instead, it is more efficient
to represent future states on coarser grids, which will automatically
have the effect of increasing the agents’ effective footprint. Each
successive grid is coarsened by a user-defined factor c, which repre-
sents the increase in uncertainty σ(∆t) from one level of lookahead
to the next. Thus, a pyramid of grids is constructed, where each
level is coarser than the one below it by a factor c. Level i of the
pyramid contains the future state of the crowd at time t+ ∆ti.

With this representation, the lookahead algorithm as defined in Fig-
ure 4 can be directly applied. For each cell at the bottom of the
pyramid, we solve the LCA problem at multiple levels of the pyra-
mid, starting from the top and cascading the solution at level i as the
preferred velocity at level i− 1. We prefer this approach as opposed
to doing complete solves for all locations at level i and interpolating
changes down. This allows a completely parallel computation, as
well as reduction in interpolation and smoothing artifacts.

3.2 Discrete Lookahead

We now extend the algorithm to discrete collision avoidance. Here,
we use the reciprocal velocity obstacle (RVO) algorithm [van den
Berg et al. 2009], which is implemented in the RVO2 library [van den
Berg et al. ]. The RVO algorithm performs collision avoidance in
velocity space, that is, the space of possible velocities that an agent
may choose. In this space, we create a “velocity obstacle” for each
neighboring agent, which represents the set of velocities that would
lead to a collision with that agent. Then, choosing a velocity outside
the union of all these obstacles ensures collision avoidance. Each
obstacle is modeled as a constraint in a linear optimization problem
to determine a collision-free velocity closest to the preferred velocity.

The traditional RVO algorithm requires the choice of a neighborhood
radius R and time horizon τ , and only considers collisions within
time τ with nearby agents no further than R distance away. This
technique is limited to local planning in a small neighborhood, as
increasing τ andR to large values degrades the performance and sta-
bility of the method. To support long-range collision avoidance, we
apply our algorithm to RVO-based LCA with minor modifications.

Instead of constructing trees for each future instant, we approximate
future neighbor searches from the current state. Recall that our
generic algorithm has multiple levels, and at the ith level, we con-
sider a lookahead of ∆ti time into the future. In the discrete setting,
we search for agents which may collide with the current agent within
time ∆ti. Since distance between two agents can change at most
by 2vmax∆ti in this time, where vmax is the maximum agent speed,
the agents relevant at level i are those that lie at distances between
R + 2vmax∆ti−1 and R + 2vmax∆ti from the current agent at
the present time. Once these neighbors are determined, we create
velocity constraints using the agents’ extrapolated future positions,
with their effective radii reduced by a ratio c for every step into the
future. (This constant is the same as that grid coarsening factor for
the continuum formulation, since both density and effective agent
radius are inversely proportional to the standard deviation of the
probability distribution assumed for the agent.)

Now, all the long-range interactions considered at different levels are
represented simply as constraints on the final velocity of the agent.
Instead of solving the levels one after another, we may apply all
the constraints simultaneously in a single RVO optimization. This
means that only one optimization solve needs to be performed per
agent, but at the expense of an increase in the number of constraints.
We therefore adopt a level-of-detail approach to reduce the number
of constraints by adaptively grouping distant agents into clusters.

As we extrapolate agents farther in time, their effective radius re-
duces further, and thus have a decreased effect on agent velocity.



Figure 5: Distant agents can be clustered for collision avoidance,
cluster size being proportional to distance. Since possible collisions
with distant agents lie in future timesteps, extrapolated future agent
states have high uncertainty, and hence small effective radii, making
individual avoidance inefficient

Thus, it is prudent to cluster these agents both to improve efficiency,
and to increase the probability of avoiding a future collision. We
use a spatial hierarchy, such as a kD tree, over the agent positions
to choose the clusters. Typically, such a hierarchy already exists in
the RVO implementation to support nearest neighbor queries, and
so does not require additional computational effort. The nodes of
the tree can provide suitable candidates for agent clusters.

When considering lookahead at level i, that is, until future time ∆ti,
we only consider agents at a distance between R + 2vmax∆ti−1

and R+ 2vmax∆ti. These agents should be grouped into clusters
of size ∆ti

∆t
as shown in figure 5. Instead of performing multiple

searches to collect nodes at each level, we perform one tree traversal
where the level of the node can be determined based on its distance
from the agent. Thus, we perform a tree traversal where at any node
C, we can determine its level i by checking which distance band
it lies in, i.e. dC ∈ [R + 2vmax∆ti−1, R + 2vmax∆ti]. However,
every node may not form a good candidate since the distribution
of agents in the subtree of this node may be sparse. Therefore
we use a maximal separation as a quality measure of each node,
i.e. maxi∈subtree(C) disti, where disti = mink∈subtree(C)(‖xi−
xk‖). Though exact computation of this value is expensive, we
compute an approximate value during tree construction by choosing
the maximum of child values, and the separation between the nodes
themselves. Thus, if a node satisfies this quality constraint, it can be
added as a velocity constraint.

Once we have a chosen a set of agents to form a cluster, we set its
position xC and velocity vC as the mean of the positions and current
velocities of its member agents. We choose the effective radius rC
of the cluster so that it covers all the expected agent positions, and
is padded by the effective agent radius rf for time t+ ∆ti. In other
words, for a cluster of m agents {x1, x2, . . . , xm}, we define

xC =
1

m

m∑
j=1

xj , (3)

vC =
1

m

m∑
j=1

vj , (4)

rC = rf + max
j
‖xj − xC‖. (5)

For each agent j, traverse the tree T starting from the root node,
at each node C:
• If node C does not satisfy maximal separation constraint

recurse on its children
• If constraint is satisfied and its level i ≤ imax, formulate

velocity obstacle constraint for node C
where imax is the highest tree level considered.

Figure 6: Lookahead Algorithm using RVO

With this definition, we define our discrete lookahead algorithm in
Fig 6.

4 Hybrid Crowd Simulation

Collision avoidance guarantees, provided by algorithms discussed
this far, are conditional on certain assumptions. In situations where
these assumptions are violated, collision avoidance guarantees do
not hold, and the resulting artifacts can produce incorrect or at least
visual unappealing results. For example, continuum algorithms work
on the assumption that a crowd can be represented accurately as a
density field. In low density regions, where this assumption does not
hold, agents routinely collide with each other, or have to be pushed
apart creating oscillatory behavior. In addition, grid representations
of these fields can suffer from aliasing issues, resulting in damped
or smoothed velocities. Discrete algorithms suffer from numerical
issues at high densities, due to low inter-agent separation. For
example, force based methods use repulsive forces that are inversely
proportional to distance. As a result, strict limits need to be enforced
to prevent agents from colliding, either on the time step, or on the
repulsive forces themselves. In geometric methods like RVO, this
is reflected in the shrinking of the solution space, meaning that the
algorithm needs to spend more computational time to converge to
this region, or risk failing to compute a collision-free velocity. In
addition, computational costs of discrete algorithms are proportional
to the number of agent neighbors. Since this cost rises sharply for
high density regions, discrete algorithms can lose their performance
edge for such scenarios.

Our lookahead formulation performs successive local collision avoid-
ance queries, thus such errors are likely to accumulate and cause
significant issues. To address this issue, we propose a simple and ef-
ficient hybrid algorithm that blends discrete and continuum collision
avoidance results. This is possible since problem cases for either
class of algorithms do not overlap. The choice of algorithm is based
on both density and variance in velocity. For varying density, there
are three possible cases:

• [0, ρcmin]: Discrete collision avoidance

• [ρcmin, ρdmax]: Blend Discrete and Continuum collision
avoidance

• [ρdmax, ρmax]: Continuum collision avoidance

where ρdmax is the maximum density at which discrete collision
avoidance can be applied, ρcmin is the minimum density for con-
tinuum collision avoidance, and ρcmin ≤ ρdmax. By using linear
blending, this can be expressed as:

v = vdisc(1− w) + vcontw (6)

w = wρ = clamp

(
ρ− ρcmin

ρdmax − ρcmin
, 0, 1

)
(7)

where clamp(x,min,max) clamps the value of x to the range
[min,max], and vdisc and vcont are collision-free velocities gener-
ated by discrete and continuum algorithms respectively.



(a) (b) (c) (d)

Figure 7: 4 way crossing of agents with 2000 agents. (a) Discrete (b) Discrete with lookahead (c) Continuum (d) Continuum with lookahead.
Note lack of agent buildup in cases with lookahead

Scene #Agents Method Time per
Step (ms)

Crossing 500 Disc 0.98
Disc LA 3.68

Circle 1000 Disc 2.6
Hyb LA 5.2

4 way 2000

Disc 5
Disc LA 47.3
Cont LA 6.8
Hyb LA 16.29

4 groups 2000 Cont 6.6
Cont LA 6.89

Table 1: Single thread performance for our examples (dt = 0.01s).
Legend: LA - with lookahead, Disc - Discrete, Cont - Continuum,
Hyb - Hybrid

To address the case of high velocity variance, we can define similar
linear blending weights. In this case, blending weights are controlled
by the standard deviation σv of the local velocity. We blend discrete
and continuum velocities in a user-defined range [c1v, c2v], where
v is the local velocity, and c1, c2 are constants. In regions of low
velocity variance, continuum avoidance is preferred, with discrete
avoidance preferred in regions of low variance, where variance is σ2

v .
Then, in a manner similar to equation (7), we can define blending
weights for this case as well:

wσv = clamp

(
c2v − σv

(c2 − c1) v
, 0, 1

)
(8)

Note that this weight has a slightly different form to maintain the
convention in (6).

We now need to combine these two weights to produce a single
interpolation weight. Though a number of possible combinations
exist, we choose w = wρwσv . This is biased towards a discrete
solution, which ensures that the likelihood of regions with high
velocity variance being simulated with continuum methods remains
low. This weighing can be tuned by appropriately choosing c1 and
c2. We find best results by choosing c1 = 1, c2 = 2. It is important
to note that these two weights are not independent. As has been
noted by [Narain et al. 2009] and others, velocity variance decreases
at high densities. Thus adding a weight for velocity variance does
not affect high density behavior significantly.

5 Results

Our algorithms were implemented in C/C++ using scalar code. In
Table 1, we provide running times on a quad-core Intel Core i7 965
at 3.2GHz. Note that these times can be significantly improved
by using appropriate vector instructions. We modified the RVO2
library to remove the restriction of maximum neighbors so as to pro-
vide collision avoidance guarantees for the neighborhood threshold

supplied.

Our lookahead and hybrid algorithms were tested on a number of
cases. The first example scenes demonstrate the lookahead algorithm
for the continuum and discrete cases. In the discrete case, two groups
of agents - one bigger than the other - head towards each other on a
collision course. Using our lookahead algorithm, the bigger group
of agents parts to allow the smaller group to go through, which is not
observed in the traditional RVO algorithm. Though we encounter
a 3.5x slowdown, the progress seen by agents is more the double,
thus over the time of the simulation, the overall cost is less than 2x
In the continuum case 8, where 4 groups of agents attempt to reach
diametrically opposite regions, agents avoid the high density region
in the center. As compared to a simulation without lookahead, agents
are able to reach their destination sooner demonstrating improved
crowd flow and progress. An advantage of the continuum case is that
lookahead is extremely inexpensive, as is seen with this example,
where significant improvements in behavior can be seen at almost
no cost

The second example scene demonstrates a 4-way crossing. With tra-
ditional collision avoidance schemes, a bottleneck quickly develops
in the middle of the scene hindering progress and causes spurious
behavior. Such behavior is significantly reduced with lookahead,
both in the discrete and continuum cases. Using hybrid algorithm
in this case provides two benefits. Oscillation of agents in low den-
sity regions is reduced as compared to the continuum algorithm,
while significant performance benefits are obtained vs. the discrete
algorithm. Though discrete lookahead slows down significantly due
to the number of neighbors to be considered, the hybrid algorithm
shows a performance benefit of 3x while retaining the same behavior.
A visual comparison in figure 7 shows the difference in the 4 kinds
of simulation.

Lastly, we replicated the well known circle demo with 2000 agents.
In this scenario, agents are seeded on a circle and attempt to reach the
diamterically opposite point. At a 2X extra computational cost, we
observe significant improvement in behavior and progress. Agents
are able to reach their goal in less than half the time, which balances
the computational cost.

6 Conclusion

We have present a new, generic algorithm that can extend both exist-
ing discrete and continuum methods to provide a simple yet effective
lookahead to achieve long-range collision avoidance for crowd sim-
ulations. This approach results in smoother crowd movement and
exhibits an agent’s tendency to avoid congestion that is often ob-
served in real crowds. We have further introduced a hybrid technique
that enables the simulation system to seamlessly transition between
discrete and continuum formulations by blending the results between
regions and by optimizing for performance and quality of resulting
simulations based on the local crowd density.



(a)

(b)

Figure 8: 4 groups of agents in circular formation exchange their
positions. Notice how lookahead (b) shows red and green agents
moving around the built up region in the center and avoid getting
stuck as is the case in (a)

Acknowledgements: This research was supported in part by ARO
Contract W911NF-04-1-0088, NSF awards 0917040, 0904990,
100057 and 1117127, and Intel.

References

BAYAZIT, O. B., LIEN, J.-M., AND AMATO, N. M. 2002. Better
group behaviors in complex environments with global roadmaps.
Proc. 8th Intl. Conf. Artificial Life, 362–370.

FEURTEY, F. 2000. Simulating the Collision Avoidance Behavior
of Pedestrians. Master’s thesis, University of Tokyo, School of
Engineering.

FIORINI, P., AND SHILLER, Z. 1998. Motion planning in dy-
namic environments using velocity obstacles. Intl. J. on Robotics
Research 17, 7, 760–772.

FRUIN, J. 1971. Pedestrian planning and design. Metropolitan
Association of Urban Designers and Environmental Planners.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive
modeling: Knowledge, reasoning and planning for intelligent
characters. Proc. of ACM SIGGRAPH, 29–38.

GUY, S., CHHUGANI, J., KIM, C., SATISH, N., LIN, M. C.,
MANOCHA, D., AND DUBEY, P. 2009. Clearpath: Highly par-
allel collision avoidance for multi-agent simulation. Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation.

HEIGEAS, L., LUCIANI, A., THOLLOT, J., AND CASTAGNÉ, N.
2003. A physically-based particle model of emergent crowd
behaviors. Proc. Graphikon ’03 2.

KAMPHUIS, A., AND OVERMARS, M. 2004. Finding paths for
coherent groups using clearance. Proc. of ACM SIGGRAPH /
Eurographics Symposium on Computer Animation, 19–28.

LAKOBA, T. I., KAUP, D. J., AND FINKELSTEIN, N. M. 2005.
Modifications of the Helbing-Molnar-Farkas-Vicsek social force
model for pedestrian evolution. SIMULATION 81, 339.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowd of virtual
humans: a new approach for real-time navigation in complex
and structured environments. Computer Graphics Forum 23, 3,
509–518.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. ACM Trans.
Graph..

ONDŘEJ, J., PETTRÉ, J., OLIVIER, A.-H., AND DONIKIAN, S.
2010. A synthetic-vision based steering approach for crowd
simulation. In ACM SIGGRAPH 2010 papers, ACM, New York,
NY, USA, SIGGRAPH ’10, 123:1–123:9.

PETTRÉ, J., LAUMOND, J.-P., AND THALMANN, D. 2005. A
navigation graph for real-time crowd animation on multilayered
and uneven terrain. First Intl. Workshop on Crowd Simulation,
81–90.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In Proc. ACM Symp. Virtual
Reality Software and Technology, 99–106.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA,
D. 2008. Real-time path planning in dynamic virtual environ-
ments using multi-agent navigation graphs. IEEE Trans. Visual-
ization and Computer Graphics 14, 3, 526–538.

SUGIYAMA, Y., NAKAYAMA, A., AND HASEBE, K. 2001. 2-
dimensional optimal velocity models for granular flows. In Pedes-
trian and Evacuation Dynamics, 155–160.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23, 3
(Sept), 519–528.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum
crowds. ACM Trans. Graph. 25, 3, 1160–1168.

VAN DEN BERG, J., GUY, S. J., SNAPE, J., LIN, M. C., AND
MANOCHA, D. RVO2 Library: Reciprocal collision avoidance
for real-time multi-agent simulation.

VAN DEN BERG, J., LIN, M. C., AND MANOCHA, D. 2008.
Reciprocal velocity obstacles for realtime multi-agent navigation.
Proc. IEEE Conf. Robotics and Automation, 1928–1935.

VAN DEN BERG, J., PATIL, S., SEAWALL, J., MANOCHA, D., AND
LIN, M. C. 2008. Interactive navigation of individual agents in
crowded environments. Proc. ACM Symposium on Interactive 3D
Graphics and Games, 139–147.

VAN DEN BERG, J., GUY, S. J., LIN, M. C., AND MANOCHA,
D. 2009. Reciprocal n-body collision avoidance. Proc. Intl.
Symposium on Robotics Research.


