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Figure 1: Our full-body crowd simulation algorithm generates smooth and natural-looking collision-free trajectories for multiple agents at
interactive rates using a coupled 2D planner and full-body motion synthesis. (A) A busy city crossing with multiple agents. (B) Agents show
natural crowd behaviors such as lane formation. (C) A shopping mall scenario where agents pass each other in narrow hallways and walk
up to shops. (D) A tradeshow scene where agents can be seen smoothly avoiding each other in narrow passages, and (E) even sidestepping
in dense situations. Our algorithm can simulate and render 30 agents at 30-35 fps.

Abstract

We present an interactive algorithm to generate plausible trajecto-
ries and full-body crowd simulations. Our formulation is based
on a novel two-way coupling between 2D multi-agent collision
avoidance and high-DOF human motion synthesis. We present
a collision-free navigation algorithm that takes into account hu-
man motion and biomechanics constraints to compute smooth tra-
jectories. Furthermore, we present a hybrid motion synthesis al-
gorithm that seamlessly transitions between motion blending and
semi-procedural locomotion, thereby balancing control and natural-
ness of the synthesized motion. The overall full-body crowd sim-
ulation algorithm can generate plausible motions with lower and
upper body movements for multiple agents in dynamic virtual envi-
ronments at interactive rates. We demonstrate its benefits over prior
interactive crowd simulation algorithms.

1 Introduction

The problem of modeling realistic movement and behavior of mul-
tiple human-like characters is important in many applications, in-
cluding computer animation, games, and CAD. One of the main
challenges is to generate plausible simulations, in terms of visual
and motion characteristics, for interactive applications such as vir-
tual reality and games. The naturalness of the simulation is gov-
erned by the trajectory that each character chooses as well as the
full-body animation of the walking character. Prior studies have
concluded that many aspects of agent or pedestrian movement, in-
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cluding positions and orientations, are important for the realistic
human perception of crowds [Ennis et al. 2011; Pelechano et al.
2008].

It is quite challenging to simulate a large group of human-like
agents, especially in dense scenarios and in the presence of ob-
stacles. Each human is an articulated character represented using
many degrees of freedom. Hence, the total configuration space of a
large crowd is very high-dimensional. Furthermore, no good tech-
niques are known for modeling the dynamics of natural looking
human motion in such high dimensions. As a result, most prior
techniques decompose the crowd simulation problem into 2D nav-
igation or path planning followed by 3D human motion animation.
There is a large body of work [van den Berg et al. 2011; Treuille
et al. 2006; Schadschneider 2002] that uses simple 2D representa-
tions for each agent (e.g., a disc) and computes collision-free trajec-
tories in a 2D plane. Given the 2D trajectories of each agent, differ-
ent methods [Welbergen et al. 2010] can be used as a post-process
to generate walking animations along those trajectories. However,
the 2D trajectory computation does not take into account human
kinematic or dynamic stability constraints or full-body interactions
in dense situations. There is some work on combining 2D naviga-
tion with full-body synthesis, but these methods are either too slow
for interactive applications or may not generate natural-looking mo-
tions in some cases [Park et al. 2015; Shapiro 2011; Singh et al.
2011; Beacco et al. 2015].

Main Results: We present an interactive algorithm to generate
plausible full-body movements of multiple humans in a shared
space (i.e., full-body crowds or FbCrowd). Our approach accounts
for several human motion constraints by incorporating feedback
from full body motion synthesis into 2D trajectory computation.
In order to generate collision-free, smooth and natural looking no-
tions, we present three novel algorithms:
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• Motion Constrained Navigation (MCN): We present an effi-
cient 2D multi-agent navigation algorithm that computes the
2D velocity for each agent based on constraints imposed by
3D human motion synthesis. These constraints are derived
from captured human motion data-sets as well as biomechan-
ics of human gait to generate human-like trajectories. The re-
sulting 2D trajectories are natural looking with fewer artifacts
as compared to prior 2D algorithms (Section 4).

• Hybrid Human Motion Synthesis (HMS): We use a hybrid
scheme that seamlessly transitions between motion blending
and semi-procedural locomotion based on the local environ-
ment. In contrast to prior methods, our approach dynamically
balances control and naturalness of the synthesized motion
(Section 5).

• Two-way Coupling between Navigation and Synthesis (CNS):
There is a tight two-way coupling between the 2D multi-agent
navigation and the 3D motion synthesis algorithm. Our cou-
pling approach generates collision-free trajectories and plau-
sible full body simulation (Section 3).

We combine these algorithms with a behavioral finite state machine
(BFSM) to simulate complex behaviors in a number of indoor and
outdoor scenes at interactive rates. Furthermore, we have integrated
our system with the Unreal game engine to render the agents in
real time. We demonstrate the benefits of our algorithm in many
challenging scenarios and highlight the benefits over prior methods
(Section 7). We also perform a preliminary user study to evaluate
the benefits of our approach.

2 Related Work

In this section, we give a brief overview of prior work in multi-agent
navigation and 3D human motion synthesis.

2.1 Interactive Multi-agent Navigation

Most prior 2D multi-agent techniques can be broadly classified as
macroscopic models and microscopic models. Macroscopic mod-
els such as [Treuille et al. 2006] compute the aggregate motion
of the agents by generating fields based on continuum theories of
flows. Microscopic models, also called agent-based models, com-
pute trajectories for each individual agent by decomposing the tra-
jectory computation problem into two phases: global planning and
local navigation. The global planners [LaValle 2006] compute a
collision-free path through the environment considering only static
obstacles. The local navigation algorithms [Helbing et al. 2000;
Karamouzas et al. 2014; van den Berg et al. 2011; Ondřej et al.
2010; Singh et al. 2009; Stuvel et al. 2016; Bruneau and Pettré
2015] adapt the local motion of each agent to avoid collisions with
dynamic obstacles and other agents. Some data-driven methods are
capable of simulating virtual crowds with behaviors similar to cap-
tured crowd footage [Lee et al. 2007], or altering key properties
to simulate varying crowd behaviors [Ju et al. 2010; Kwon et al.
2008]. Most of the above-mentioned methods use simple disc-
based representations for each agent, except for [Stuvel et al. 2016]
which employs capsule-shaped agents, and compute 2D trajectories
based on those representations.

2.2 Interactive Human Motion Synthesis

There is extensive literature in computer graphics and animation on
generating human like motion [Welbergen et al. 2010]. In this sec-
tion, we limit our discussion to some data-driven, procedural, and
physics-based methods that have been used for interactive applica-
tions.
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Figure 2: Two-Way Coupling. We highlight the two-way coupling
between our 2D multi-agent navigation algorithm (MCN) and 3D
human motion synthesis algorithms (HMS). The coupled navigation
and synthesis algorithm (CNS) guides the motion synthesis based
on the input from the 2D navigation algorithm and local environ-
ment, and is used to compute plausible motion at interactive rates.

Data-driven methods can generate new trajectories by blending
multiple motions. Motion graphs [Kovar et al. 2002; Feng et al.
2012; Min and Chai 2012] can generate a graph of motion clips
and use search methods to compute a sequence of motion examples
that are used to compute the desired locomotive trajectory. In gen-
eral, these methods are limited by the underlying motion database,
and often lack accurate control over the character for locomo-
tion based applications. Some data-driven methods use spatio-
temporal discretization to simulate multi-character interactions in
large scenes [Lee et al. 2006; Shum et al. 2008; Kim et al. 2012;
Won et al. 2014]. These methods are ideal for simulating interac-
tions between few characters located within a fixed region (often
referred to as tiles), with restricted movement between tiles. Choi
et. al. [Choi et al. 2011] present a data-driven method for navigat-
ing complex static environments but do not account for agent-agent
interactions.

Procedural methods generate locomotion by applying kinematic
principles based on underlying biomechanics. These include in-
verted pendulum based models [Bruderlin and Calvert 1993],
semi-procedural methods [Johansen 2009], physics-based ap-
proaches [Jain et al. 2009]. While such methods can compute phys-
ically correct motion, they may not always be natural looking.

2.3 Combining Multi-agent Navigation & Motion Syn-
thesis

A few methods combine multi-agent navigation and motion synthe-
sis to generate realistic motions for a large number of human-like
agents. Some of these use a combination of robotics and physics-
based simulation techniques [Park et al. 2015] which can be com-
putationally expensive and may not generate human like motions.
Other methods such as [Shapiro 2011; Singh et al. 2011; Beacco
et al. 2015] are capable of real time simulations, but may not sat-
isfy all the constraints.

3 Overview

In this section, we introduce the notation and terminology used in
the rest of the paper. Furthermore, we give an overview of our two-
way coupling algorithm.



3.1 Notation and Assumptions

We denote a scalar variable n with lower case letters, a vector x with
a bold face lower case letter, a set C of entities with an upper case
calligraphic letter. Each agent i in the simulator has an associated
skeletal mesh, that is used for full-body motion synthesis. Each
configuration qi of the skeletal mesh is defined using the degrees-
of-freedom (DOFs), including the 6-DOF root pose and the joint
angles represented using n-dimensional vector space. We define the
simulator state S as the union of all entities in the scene, including
obstacles in the environment and the overall state space Q = ∪iqi.

We project the geometric representation of each skeletal mesh in
Rn space to the R2 plane and bound it with a tightly fitted circle
of radius ri for multi-agent navigation. Therefore, each skeletal
mesh with 6-DOF root joint qrt

i is represented in the 2D multi-agent
simulator by a circle of radius ri positioned at pi, where pi is simply
the projection of the root joint qrt

i on the 2D plane. The multi-
agent navigation algorithm generates trajectories that correspond
to the XY-projection of the 6-DOF root joint qrt

i of the associated
skeleton. These collision-free trajectories are represented as 2D
time varying functions representing the position pi(t) and velocity
vi(t).

Figure 2 highlights our approach and the various components. The
main components are: the 2D navigation algorithm (MCN), the 3D
human motion synthesis algorithm (HMS), and the two-way cou-
pling between navigation and synthesis (CNS).

3.2 MCN: 2D Constraint Navigation Algorithm

We present a novel 2D navigation algorithm to compute smooth,
collision-free trajectories. We use an agent-based approach, i.e.,
each agent is modeled as a discrete entity, represented as a 2D
disc, with distinct goals, and computes its path independently of
other agents. This path is represented by the instantaneous pre-
ferred velocity (vpre f

i ) i.e., the velocity in the direction of an im-
mediate goal. Our MCN algorithm can be formally defined as a
function MCNi : S×R2×R→ R2×R to denote a function that
maps the simulator state, the instantaneous preferred velocity, and
time horizon, τ , into a collision-free 2D velocity, vi, with respect
to other agents in the environment for at least time τ , and desired
orientation od

i . Unlike prior navigation methods, we also take into
account many motion constraints from the motion capture database
as well as the skeletal mesh. This results in 2D trajectories that are
amenable to full body motion synthesis and plausible simulation
(Section 4).

3.3 HMS: 3D Human Motion Synthesis Algorithm

Our motion synthesis algorithm computes the trajectory qi for the
articulated skeleton in n-dimensional space. We present a hybrid
locomotion algorithm that accounts for the mismatch in the dimen-
sionality of the planning space for 2D navigation and full-body mo-
tion synthesis by dynamically balancing the naturalness of the mo-
tion and its fidelity with respect to the 2D trajectory (Section 5).

3.4 CNS: Two-way Coupling between Navigation and
Synthesis

Ideally, the 2D collision-free velocity, vi and the resulting trajec-
tory, are precisely followed by the 3D motion synthesis algorithm.
However, the high dimensionality of the motion synthesis algorithm
tends to introduce some variability in the synthesised velocity of the
root joint qrt

i . This implies that a collision-free 2D velocity com-
puted by the navigation algorithm may still lead to collisions in

the full-body synthesized motion. We overcome this drawback by
tightly coupling the 2D navigation algorithm and the 3D motion
synthesis algorithm.

First, we synchronize the position and orientation of the 2D disc
with that of the root joint of the corresponding skeletal mesh. Sec-
ond, we derive constraints from the motion database used for mo-
tion synthesis to limit the set of feasible velocities in the 2D plan-
ning stage. This imposes asymmetrical constraints in velocity space
(Figure 3), similar to human movement. Overall, the 2D navigation
algorithm guides the motion synthesis computation.

3.4.1 Hybrid Human Motion Synthesis

We prioritize motion-blending-based synthesis over semi-
procedural synthesis unless there is a possibility of collision. At
run-time, we compute the minimum time to collision [Karamouzas
et al. 2014], ttci, and the local density [Narang et al. 2015], di, for
every agent i in the simulation with respect to close-by agents and
obstacles. Let ttrans and dthresh denote user defined thresholds for
time and local density respectively. We use the following condition
to check if the character should use motion-blending-based
synthesis:

ttci ≤ ttrans∧di ≤ dthresh. (1)

For other cases, the character should use semi-procedural synthesis
to follow the 2D trajectory and minimize collisions. We choose
ttrans such that it exceeds the maximum time to transition from one
synthesis algorithm to the other. Moverover, we ensure that the
planning horizon for the MCN algorithm exceeds ttrans so that the
agent has enough time to transition into semi-procedural synthesis
before any potential collisions. The actual transition mechanism is
described in Section 5.

4 MCN : Motion Constrained Navigation

In this section, we present our novel 2D navigation algorithm that
computes the 2D trajectory of each agent using a combination of
global path planning and local navigation techniques. In contrast
to prior approaches, our algorithm takes into account the current
state of the skeletal mesh and many constraints related to full-body
motion to generate 2D trajectories that can lead to natural looking
motion synthesis.

4.1 Human Motion Constraints from Captured Data

We account for human kinematic and dynamic stability constraints
by analyzing a database of human motions (Section 6). The motion
database is comprehensive and consists of a wide range of human
motions, implying that we can constrain motions that lie outside the
set of motion examples. Each motion, m, is parametrized in a 3D
space defined by the scalar speed v f , the turning rate ωt , and the
strafing rate ωs. We begin by first mapping the motion examples,
where ωs = 0, to velocity space. For example, the motion m =
{v f ,ωt ,0} can be mapped to the 2D velocity vmotion = {vx,vy} as:

u = {cosω
t ,sinω

t} (2)

vmotion =
u
‖u‖

.v f . (3)

We wish to limit the set of feasible velocities to the space defined
by the motion database by formulating half-plane constraints which
can be efficiently solved. Figure 3(a) shows the motion examples
in the velocity space, where each motion example is represented
a point mapped according to Eq. 3. It can be seen that the wrap-
ping polygon for the set of vertices is non-convex and thus, the
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Figure 3: Motion Examples in the Velocity Space. We choose
velocities that lie inside the set of motion examples from a database.
(a) Each vertex represents a motion from the database, visualized
in the velocity space. (b) We build half-plane velocity constraints
for the vertices lying on the convex hull (green). To avoid culling
feasible velocities, we dynamically add constraints corresponding
to sharp turning motions (red).
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Figure 4: Biomechanical Constraints. We use the full body motion
synthesis algorithm to determine the position and orientation of the
stance leg, st, and constrain the movement of the swing leg to ac-
count for dynamic gait stability and to prevent self-collisions. The
heel (stheel) and toe (sttoe) of the stance foot (left) are used to con-
struct a half-plane (red) of excluded velocities for the next planning
step. This imposes human motion constraints on the 2D navigation
algorithm, and generates 2D trajectories that are suitable for full
body motion synthesis.

corresponding half-plane constraints will cull velocities supported
by the database. We overcome this by first computing a convex
hull of the set of motion examples to yield a clockwise ordered set
of n vertices V = {vmotion

0 ,vmotion
1 , ....,vmotion

n−1 }. Next, we compute
half plane constraints for each each edge of the convex hull (Fig-
ure 3(b)) and denote the set by Cmotion. For two consecutive ver-
tices’s vmotion

i = {vx
i ,v

y
i } and vmotion

i+1 = {vx
i+1,v

y
i+1}, the half-plane

constraint, Cτ
i , can be defined by the point p and direction vector d

given as:

p = vmotion
i , (4)

d =
vmotion

i −vmotion
i+1

‖vmotion
i −vmotion

i+1 ‖
. (5)

By considering the convex hull, we have included feasible veloci-
ties that are not contained within the motion database. This would
also include a wide space of velocities where the character is turn-
ing behind i.e., |ωt | > 90. We dynamically add half-plane con-
straints if the preferred velocity, vpre f , suggests a turn of more than
90 ◦ from the current orientation of the character. This corresponds
to the asymmetry in human motion i.e., turning motion is more re-
strictive than forward motion.

4.2 Biomechanical Constraints

The human walking gait cycle can be divided into six distinct peri-
ods that comprise the stance and swing phase [Vaughan et al. 1992].
For a gait cycle starting with the right foot leaving the ground, the
first three phases i.e., initial double support, single limb stance, and
second double support comprise the left stance phase while the next

Figure 5: Human Motion Constraints. Our 2D navigation al-
gorithm (MCN) takes into account human motion constraints and
formulates them as half-plane velocity constraints. (L) Motion con-
straints (i.e. the red region) derived from a database of motions.
(R) Biomechanical constraints limit the set of feasible foot plants of
the swing leg. Combined together, these motion constraints restrict
the movement of the character based on the current full body pose
and result in natural-looking synthesized motion.

three phases i.e., initial swing, mid swing and terminal swing com-
prise the left swing phase. Previous studies in dynamic gait stabil-
ity [Hof et al. 2005] have shown that center of mass of the character
must stay over the base of support. It is likely that this condition is
violated if the swing leg crosses the half-plane defined by the orien-
tation and position of the stance leg. Moreover, the swing leg may
also collide with the stance leg. We account for these constraints in
our 2D navigation algorithm.

We use the full-body motion synthesis algorithm to determine the
stance leg, St, and swing leg, Sw, of the character at every time-
step. Let Sth, Stb and Stt denote the positions of heel, ball and
toe joints, respectively, of the stance leg that is projected on the
ground plane. We wish to limit the set of feasible landing positions
for the swing foot to a half-plane, Hst , defined by the stance-foot
orientation vector Sto = Stt − Sth. Humans can also turn sharply
by twisting the stance foot in place. We account for this by rotating
the orientation vector (Sto) by a pre-defined threshold. We define a
half-plane, Hbm, for the stance leg as:

Hbm = {p|(p− stb).nb ≥ 0}, (6)

where nb denotes the normal to the stance foot vector ost at Stb, out-
ward with respect to the root position qrt . We define a line segment
between two points given l1 and l2 given by:

l1 = Sth ∗ k (7)

l2 = Sth ∗ k+Sto, (8)

where k = 1 to ensure that the line segment < l1, l2 > lies outside
the bounding disc of the agent. We construct a velocity constraint
Cbm for the line segment < l1,21 >. Finally, adding Cbm to the set
of motion constraints derived from human motions (Section 4.1)
yields the set of full body motion constraints Cmotion.

4.3 Adapting Preferred Velocity to Local Conditions

The global-local paradigm for multi-agent simulation is often used
to simulate a large number of agents at interactive rates. However,
the fact that the global plan is independent of local dynamic con-
ditions can lead to artifacts in the local planning. This can lead to
noisy trajectories, increased collisions, and undesirable agent be-
haviors.

We adapt the preferred velocity generated by the global planner,
vpre f

i , for agent i to local dynamic conditions by considering “social
forces” [Helbing et al. 2000; Karamouzas et al. 2014]. The adapted
preferred velocity, vop

i , for the agent with mass mi is given by:

mi
dv0p

i
dt

= mi
vpre f

i −v0p
i

τ0
+∑

j 6=i
fi j +∑

W
fiW , (9)



where fi j and fiW denote the repulsive forces due to neighboring
agent j and obstacle W respectively. We use the formulation given
by [Karamouzas et al. 2014] to compute the repulsive forces.We
also scale down the preferred speed based on local density condi-
tions [Narang et al. 2015], which can result in smoother trajectories.

4.4 Collision-free Velocity Computation

The social-forces model [Karamouzas et al. 2014] is effective at
influencing the agent’s plan w.r.t. local conditions, but is prone
to collisions. We use reciprocal velocity obstacle [van den Berg
et al. 2011] to formulate collision avoidance constraints Ccollisionτ

i
for the planning time τ . The intersection of half-plane constraints
(Ccollisionτ

i ∪Cmotion
i ), yields the set of feasible velocities for agent i.

Similar to [van den Berg et al. 2011], we use linear programming to
find a new collision-free 2D velocity vi from this set that minimizes
the deviation from the adapted preferred velocity.

4.5 Preferred Orientation

The 2D planner sets the desired forward facing vector fd
i for agent i

as:

fd
i =


vpre f

i

‖vpre f
i ‖

, if vpre f
i

‖vpre f
i ‖

. vi
‖vi‖ ≥ 0, tstra f e

i < tstra f eLim

vi
‖vi‖ , otherwise

where vpre f
i denotes the initial preferred velocity, vi is the collision-

free velocity. This formulation yields lateral movement, also called
strafing, when fd

i .vi 6= 0. We track the contiguous time that the
agent has been strafing tstra f e

i and limit it to a predefined threshold
tstra f eLim. Finally, we set the desired orientation od

i to the angular
representation of the unit vector fd

i .

5 HMS: Hybrid Human Motion Synthesis

An ideal motion synthesis algorithm should generate natural look-
ing collision-free motion while precisely following the input 2D
trajectory. However, existing synthesis methods tend to choose be-
tween the control or naturalness of the synthesized motion. Instead,
we present a hybrid human motion synthesis algorithm (HMS) that
generates full body motion to follow the 2D velocity computed by
the MCN algorithm and balances control as well as naturalness of
the full-body motion.

Our method seamlessly transitions between two widely used char-
acter locomotion techniques based on local dynamic conditions.
We use a motion-blending technique [Feng et al. 2012] to generate
natural looking motion. However, the synthesized motion may not
precisely follow the desired 2D velocity. Thus, we transition to a
semi-procedural technique [Juarez-Perez et al. 2014] in cases where
the control over the character is critical. We present the algorithm
to seamlessly transition between the techniques below and describe
the specific conditions for such a transition in Section 3.4.1.

Let Mmb = {m1,m2, ...mn} denote a set of motion clips used by
the motion blending algorithm. We first identify the motion clip
mmb ∈Mmb, which is most similar to the motion clip used by semi-
procedural locomotion msp, in terms of average walking speed s,
turning angle ωt , and strafing angle ωs. Next, we build a set of
correspondence times, T = {(t1

sp, t
1
mb),(t

2
sp, t

2
mb), ...}, which contain

pairs of key times in the motion clips msp and mmb at which the
character poses are similar. We compute the set T offline and use it
for transitions between the locomotion algorithms described below.

Figure 6: Performance Graph. This graph shows the performance
of our algorithm on the anti-podal circle with increasing numbers of
agents. The motion synthesis module (HMS) dominates the overall
computation time, compared to the 2D navigation algorithm (MCN)
and the coupling algorithms (CNS). Our system can simulate 40+
agents at 30 fps, excluding rendering costs.

5.1 Transition to Semi-procedural Locomotion

We begin by smoothly manipulating the blending weights such that
the blending algorithm only uses mmb ∈Mmb. Once mmb is in use,
we use the pre-computed correspondence set T to find a suitable
time to transition. Given the current time tmb in the walk cycle mmb,
we compute the suitable correspondence pair Ti = (t i

sp, t
i
mb)(∈ T )

based on the condition:

(t i
mb− tmb ≥ 0)∧ ((t i

mb− tmb)< (t j
mb− tmb)∀ jt

j
mb > tmb). (10)

Once we have found a suitable correspondence pair, Ti =
(t i

sp, t
i
mb)(∈ T ), we initialize semi-procedural locomotion with time

t i
sp, when the current time tmb equals or surpasses t i

mb. We use a
similar approach to transition to the motion blending algorithm.

6 Implementation and Performance

In this section, we present the implementation details of different
components of our system. We also highlight the performance of
our approach in different scenarios.

BFSM: We use a BFSM to represent the behavioral state of each
agent in the simulation. The BFSM maps the time and simulator
state into a goal position gi for agent i. We utilize the crowd sim-
ulation framework Menge [Curtis et al. 2016] to implement our
local navigation algorithm.

Global Path Planning: We employ a navigation mesh to plan a
collision-free path with respect to static obstacles in the environ-
ment. The global planner maps the simulator state and the agent’s
goal position into a instantaneous preferred velocity, vpre f

i , and pre-
ferred orientation, od

i .

Motion Database: We leverage the motion database described
in [Shapiro 2011] to generate the motion of each agent. The
database comprises of 19 different locomotion examples.

6.1 Performance
We have implemented our algorithm in C++ on a Windows 10 desk-
top PC. All the timing results in the paper were generated on an
Intel Xeon E5-1620 v3 with 4 cores and 16 GB of memory. Our
current implementation is not optimized. We present the timing re-
sults (Figure 6) on the anti-podal circle benchmark where agents are



placed on the circumference of the circle with diametrically oppo-
site goals. In practice, the HMS algorithm is significantly more
expensive than MCN, especially as the number of agents in the
scene increases. Moreover, MCN is easier to parallelize on mul-
tiple cores. IOur system can generate the trajectories and full-body
motion of many tens of agents at interactive rates on desktop PCs
and has been integrated with the Unreal game engine that is used
for rendering.

7 Results

We highlight the results of our approach on several challenging
benchmarks and discuss benefits over prior approaches.

7.1 Benchmarks

We demonstrate the performance of our approach on three bench-
mark scenarios, shown in Figure 1.

Shibuya Crossing We simulate a busy street crossing (Figure 1(A-
B)), where agents are probabilistically assigned goal positions and
must use the pedestrian walk lanes to navigate. This forces the
agents to constantly avoid collisions with other agents in the scene.
Subtle collision avoidance behaviors can be seen (in the video),
when the agents change their path to avoid collisions. In some
cases, overt collision avoidance behaviors such as sidestepping
movement can also be observed as well. Our system can simulate
and render 30+ agents at approx. 30-35 fps.

Tradeshow We simulate a tradeshow scenario (Figure 1(c)) which
is challenging due to the high number of obstacles and narrow pas-
sages. Our approach heavily exploits the BFSM to simulate behav-
iors such as walking up to a randomly assigned booth and facing
towards the booth for a few seconds. Agents can be seen smoothly
avoiding collisions with one other in the narrow passages, forming
lanes and and often sidestepping to avoid each other (Figure 1(D-
E)). Our system can simulate and render 50+ agents at 15-20 fps.

Shopping Mall This scenario shows a shopping mall (Figure 1(C))
where agents walk around the shops and pass each other in the nar-
row hallways. Overall, we observe smooth trajectories and collision
avoidance behaviors. Our system can simulate 15 agents at 50-60
fps, including rendering cost.

Obstacle Course: Evaluating the Benefits of HMS
We evaluate the benefits of our HMS algorithm on a challeng-
ing scene with narrow and sharp turning passages. A purely mo-
tion blending approach generates smooth motion in open space but
causes collisions in the tight corners. On the other hand, a purely
semi-procedural approach generates collision-free trajectories but
the resulting motion is prone to artifacts such as mechanical looking
motions. In contrast, our hybrid motion synthesis algorithm gener-
ates natural looking motion in open space, and seamlessly transi-
tions to the semi-procedural approach as the character approaches
the narrow passageways, as can be seen in the video.

7.2 Comparisons

We have compared the performance of our approach with prior
methods. These include comparisons between MCN and prior 2D
navigation algorithms; and comparison of CNS with prior coupled
crowd simulation algorithms and systems.

7.2.1 Decoupled 2D Navigation Algorithms

We couple the motion blending based synthesis algorithm with
prior 2D navigation methods to evaluate the benefits of our 2D

planning algorithm (MCN). We use the following benchmarks and
present results in Table 1.

• 2-Way Crossflow: In this benchmark, two populations, each
with 15 agents, cross each other orthogonally. Agents with
MCN slow down appropriately as they approach the con-
gested intersection, sidestep and find gaps to avoid each other.
Thus, MCN algorithm results in fewer collisions as compared
to ORCA and SF. Furthermore, MCN generates smoother tra-
jectories, indicated by the lower average acceleration value.

• Bidirectional Flow: In this benchmark, two groups of agents
approach each other at an angle of 180◦. ORCA agents
abruptly change velocities to avoid collisions leading to noisy
trajectories. MCN agents attempt to smoothly navigate past
each other which leads to slightly higher number of collisions.
Compared to SF, both MCN and ORCA agents depict crowd
behaviors such as lane formation.

• 4-Way Crossflow: In this scenario, four groups of agents are
initialized at the corners of a square with diagonally oppo-
site goals. Agents with MCN often sidestep and execute tight
turns to avoid each other. In contrast, the SF algorithm is un-
stable due to the high timestep (t = 0.1 s) which leads to sig-
nificantly larger number of collisions. Furthermore, the MCN
algorithm generates smoother trajectories compared to both
ORCA and SF.

These benchmarks demonstrate that MCN results in fewer colli-
sions, smoother trajectories and more stable behaviors as compared
to prior multi-agent navigation, even at high time-steps. Further-
more, MCN can automatically generate many emerging behaviors
including commonly observed crowd behaviors such as lane forma-
tions, arching at bottlenecks, etc.

7.2.2 Coupled Approaches

There are some prior interactive crowd simulation systems that pro-
vide some coupling between navigation and synthesis. Some of
these use footstep-based planners. Singh et al. [2011] use an in-
verted pendulum model to generate a timed sequence of footsteps
that can be followed precisely using procedural animation. Beaccho
et. al. [2015] use motion interpolation and blending to synthesize
motion which can follow the footstep trajectory. These footstep-
based planners impose some biomechanical constraints, but also
make some simplifying assumption that can impact the plausibil-
ity of the generated 2D trajectories and lead to artifacts in motion
synthesis. Furthermore, the method presented by Beaccho et al. in-
troduces a user-defined constant that prioritizes between fidelity of
root movement and footstep placement in the synthesized motion.
In contrast, our method uses local conditions to dynamically tran-
sition between two different motion synthesis algorithms, thus bal-
ancing control and naturalness of the synthesized motion. Park et
al. [2015] use a coupled approach based on full-body motion plan-
ning. It is not fast enough for interactive applications and may not
generate natural looking motion.

Shapiro et al. [2011] present a character animation approach that
utilizes a 2D steering algorithm and a motion-blending-based
technique to generate visually plausible motion. However, their
method prioritizes naturalness of the synthesized motion and is
prone to collisions in medium to high density crowds. We evalu-
ated the smoothness of the trajectories generated by our algorithm
(CNS), with those generated by Smartbody (using Steerlib) on the
anti-podal circle benchmark with 17 agents. Figure 7 highlights
the trajectory of each agent with a different color. The agents
in our approach, CNS, are able to navigate to their goals faster
with smoother trajectories. On the other hand, Smartbody (with
Steerlib) can generate noisy trajectories with significantly higher



Benchmark Num. Agents Collisions Average Acceleration Average frame update time (ms)
ORCA SF MCN ORCA SF MCN ORCA SF MCN

2-way Crossflow 30 0.0566 0.1440 0.0496 0.1542 0.1253 0.1135 0.40 0.32 0.43
Bidirectional Flow 53 0.0491 0.0539 0.0722 0.1901 0.1683 0.1121 0.66 0.57 0.70
4-way Crossflow 100 0.2027 0.3369 0.1791 0.0532 0.0390 0.0387 6.40 6.53 17.71

Table 1: Comparing MCN with prior 2D Navigation Algorithms. We evaluate our 2D planning algorithm, MCN, with prior methods based
on velocity obstacles (ORCA) and social forces (SF). All three 2D navigation methods are coupled with motion blending based synthesis and
simulated at a fixed time step. We compare (a) the number of agent-agent collisions, measured using interval penetration depth averaged over
all frames and agents, (b) the average acceleration of the root joint over all frames and agents, and (c) the average frame update time for
2D planning. Our MCN algorithm accounts for the full body pose during 2D planning leading to fewer collisions in the synthesized motion.
Moreover, it generates smoother trajectories, indicated by the relatively lower average acceleration, at a slightly higher run time cost.

(a) Smartbody (b) CNS

Figure 7: Trajectory Comparisons on the Anti-podal circle bench-
mark. We visualize the root joint position of each agent using a
different color. (a) The agent trajectories generated in Smartbody
(using steerlib) exhibit several collisions and noisy trajectories. (b)
Our method, CNS, results in fewer collisions and smoother trajecto-
ries. Moreover, our agents reach their goals faster than Smartbody.

number of collisions. This can be observed in the middle region
near the center of the circle in Figure 7(b). These behaviors are
also illustrated in the video.

There has been extensive work on synthesizing natural look-
ing interactions between virtual characters. Many of these
methods rely on spatial discretization that may not be suitable for
locomotion based behaviors [Lee et al. 2006; Shum et al. 2008;
Won et al. 2014; Hyun et al. 2013], or do not provide collision
avoidance guarantees for multi-agent navigation in dynamic
environments [Kim et al. 2009; Choi et al. 2011]. In contrast,
our approach is more suitable for navigation-based behaviors and
provides collision-free trajectory computations for tens of agents
in dense environments. Also, our multi-agent navigation algorithm
(MCN) can be easily integrated with other motion synthesis
algorithms [Min and Chai 2012] and animation systems such as
Morpheme or Unity’s Mecanim.

7.3 User Evaluation

We conducted a within-subjects user study to evaluate the benefits
of our coupled navigation and synthesis algorithm (CNS) as com-
pared to a decoupled method. In case of the decoupled method,
we used ORCA to first generate 2D trajectories and then a motion
blending based synthesis method which exactly followed the 2D
trajectory. The study comprised of two scenes: anti-podal circle
with 17 agents, and bidirectional flow with 18 agents. For each
scene, the user was presented with a pair of motion clips, one sim-
ulated with CNS and the other with a decoupled planner. We asked
the users to rate the clips using a 7 point Likert scale with values
labeled (Left Much Better, Left Better, Left Slightly Better, No Dif-
ference, Right Slightly Better, Right Better, Right Much Better). In
this response format, a value of one indicates a strong preference
for the clip listed on the left of the presentation. The left and right
order of presentation, as well as that of the scenes was counter-
balanced. The user were asked to rate the pair of motion clips on
the questions of “naturalness of the motion”, “naturalness of crowd
interactions”,“amount of collisions”, and “amount of artifacts”.

Figure 8: User Responses in the Antipodal Circle scenario. For
each question, participants rated their preference on a scale of 1 to
7 with 7 representing the highest preference for our system. Users
prefer our approach to a decoupled approach in 62% of the re-
sponses when asked to evaluate the naturalness of motion. In par-
ticular, 33% of the users gave our method the highest possible rat-
ing. Similar responses were observed on the question of naturalness
of the crowd interaction, with 61.9% preferring our method.

The user study was taken by 21 participants on an online portal. In
case of the anti-podal circle scenario, the user responses showed
a preference for our approach with 62% favouring our coupled
method on the question of naturalness of motion, as compared to
the decoupled method (Figure 8). In particular 33% of the users
gave our method the highest possible rating, compared to 14.3%
for the decoupled method. Similar responses were observed on the
question of naturalness of the crowd interaction, with 61.9% prefer-
ring our method compared to 23.8% for the decoupled planner. Of
these responses, 52.3% indicated strong or very strong preference
(6 or 7), compared to 19.05% for the decoupled planner. In the
bidirectional flow scenario, our method was preferred to the decou-
pled method in 33% of responses on the question of naturalness of
motion and 19% on the question of naturalness of interaction. We
attribute this discrepancy to the simplicity of the computed paths
and relatively low average densities, creating less adversarial con-
ditions.

8 Conclusion, Limitations & Future Work

We present an interactive approach for full-body crowd simulation
in a shared space. Our formulation computes collision-free trajec-
tories and plausible full body motions for each agent. We present a
novel two-way coupling between 2D navigation and 3D human mo-
tion synthesis, along with a constrained 2D navigation and a hybrid
3D human motion synthesis algorithm. We have demonstrated the
interactive performance of our overall algorithm in many scenarios
and highlight the benefits over prior crowd simulation methods.

Our approach has some limitations. Given the overall goal of in-
teractive performance, our human motion synthesis algorithm is
a hybrid combination of motion blending and inverse kinematics.



It may be possible to generate more natural looking motions us-
ing data-driven or physics-based simulation algorithms, but they
tend to be more expensive. Our coupled method does not take into
account many behaviors, biomechanical, and other natural-looking
constraints. The range of movements is limited by the number of
locomotion examples in the motion database. Most current motion
databases consist of humans walking in open spaces, and may not
capture full body motions corresponding to pairwise interactions
between the agents in the database.

There are many avenues for future work. Besides overcoming the
limitations, we would like to improve the fidelity as well as perfor-
mance of the hybrid human motion synthesis algorithm. It could be
useful to evaluate the benefits of the movements generated by our
algorithm in terms of realistic human perception of crowds, adding
different gestures [Ennis et al. 2011; Pelechano et al. 2008; Narang
et al. 2016], and also motion styles based on high level attributes
such as personality [Durupinar et al. 2016]. Our MCN and CNS
can also be combined with other human motion synthesis algo-
rithms [Lee et al. 2006; Shum et al. 2008; Kim et al. 2012; Won
et al. 2014]
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Appendix

9 2D Collision-free Velocity Computation

In this section, we provide additional details of our novel 2D navigation
algorithm, MCN. We begin by computing half-plane velocity constraints
related to full body motion, as described in Sections 4.1 & 4.2 of the main
document. We refer to these motion constraints as Cmotion.

9.1 Adapting Preferred Velocity to Local Conditions

We adapt the preferred velocity, vpre f
i , to local dynamic conditions, as de-

tailed in Section 4.3 of the main document. We use a social forces for-
mulation [Karamouzas et al. 2014] followed by a density filter [Narang
et al. 2015] to yield a more appropriate preferred velocity, referred to as
the adapted preferred velocity vop

i .

The force fi j experienced by pedestrian i due to the interaction with another
pedestrian j is formulated as:

fi j =−∇pi j (kτ
−2e−τ/τ0 ), (11)

where ∇pi j is the spatial gradient, pi j = pi−p j is the relative displacement
of i and j, τ is the time to collision or interaction, k and τ0 are constants.
A similar formulation is used to compute the repulsive force fiW for every
neighboring obstacle W . The adapted preferred velocity vop

i can then be
computed using Eq. 9 of the main document. We use the same values for
the constants as described in [Karamouzas et al. 2014]. Finally, we scale
down the preferred speed based on local density conditions which can result
in smoother trajectories.

The main advantage of such a model is that each agents plan is in- fluenced
by the neighboring agents. Furthermore, this influence depends on the local
conditions in the environment. For example. two agents moving towards
each other at a small relative velocity should influence each other less as
compared to two agents that approach each other at a high relative velocity.
However, the exponential response function introduces issues with numeric
stability, wherein the forces acting on the agents can cause jittery behavior
i.e. high frequency oscillations in velocities, especially in dense scenarios.
In general, combining these forces to guarantee collision avoidance is an
open problem. These issues are generally avoided by significantly reduc-
ing the simulation timestep to a small value, e.g., 0.001 seconds, which can
slowdown the overall simulation. However, using such a low timestep may
not be possible for interactive applications. We overcome this issue by using
the social forces model to only modulate the preferred velocity and impose
additional constraints to select a collision-free 2D velocity, as described be-
low.

9.2 Collision-free constraints

The social-forces model is effective at influencing the agent’s plan w.r.t. lo-
cal conditions but are prone to collisions. We use the reciprocal velocity
obstacle (ORCA) based constraints [van den Berg et al. 2011] to enforce
collision avoidance. For each neighboring agent j, moving with current
velocity v j , we compute the half plane constraint Cτ

i j . Effectively, the con-
straint Cτ

i j represents a half plane of collision-free velocities for agent i with
respect to agent j for the planning time τ . Similarly, we build a half plane
constraint Cτ

iW for each nearby obstacle W . We refer to these constraints as
Collision-free Constraints, Ccollisionτ

i , defined as:

Ccollisionτ

i = ∪ jCτ
i j ∪W Cτ

iW (12)

9.3 Collision-free Velocity Computation

At every time step, the algorithm computes the preferred velocity vpre f
i ,

adapts it to local conditions to yield vop
i , and generates half-plane human

motion constraints, Cmotion
i , for each agent i in the simulation. Next, we

compute the collision-avoidance constraints, Cuτ

i .

Ctotal
i = Ccollisionτ

i ∪Cmotion
i . (13)

The intersection of all the half-plane constraints yields the convex set
MCNτ

i of collision-free velocities that respect motion constraints. Simi-
lar to [van den Berg et al. 2011], we use linear programming to find a new
collision-free 2D velocity vi from the set MCNτ

i that minimizes the devia-
tion from the adapted preferred velocity.

vi = min
vi∈MCNτ

i

‖vi−vop
i ‖ (14)

9.4 Dense Conditions

In dense conditions, there might be instances where the 2D linear program
fails to find a solution because MCNτ

i is empty. In such cases, we choose
the “safest possible” velocity for the agent, i.e. the velocity that minimally
penetrates the constraints induced by the other agents. This can be done by
solving a three dimensional linear program, where the signed distance to
the half plane represents the third dimension, as described in [van den Berg
et al. 2011]. However, in contrast to ORCA, we prioritize agents in order of
the time to collision which reduces the number of collisions. Thus, an agent
prioritizes collision avoidance with a agent heading towards it as opposed
to a closer agent heading away.

10 Transition to Motion-blending Based Lo-
comotion

We employ a hybrid motion synthesis algorithm that seamlessly transitions
between motion blending and semi-procedural synthesis based on local dy-
namic conditions. The algorithm for transitioning to semi-procedural loco-
motion is described in Section 5.1 of the main document. Here, we provide
details on mechanism for transitioning to motion blending based synthesis.

LetMmb = {m1,m2, ...mn} denote a set of motion clips used by the motion
blending algorithm. Moreover, let mmb ∈Mmb denote the motion clip that
is most similar to the motion clip used by semi-procedural locomotion msp,
in terms of average walking speed s, turning angle ω t , and strafing angle
ωs. Also, let T = {(t1

sp, t
1
mb),(t

2
sp, t

2
mb), ...}, denote the set of pairs of key

times in the motion clips msp and mmb, for which the character poses are
most similar.

Given the current time in walk cycle for semi-procedural locomotion tsp, we
find the suitable correspondence pair Ti = (t i

sp, t
i
mb)(∈ T ) as follows:

(t i
sp− tsp ≥ 0)∧ ((t i

sp− tsp)< (t j
sp− tsp)∀ jt j

sp > tsp). (15)

When the current time in the walk cycle for semi-procedural locomotion
becomes equal to t i

sp, we start the motion-blending based locomotion at the
corresponding time t i

mb. We set the blending weights such that the blending
algorithm starts with using mmb ∈Mmb to ensure smooth transition. Once
the transition is complete, we set appropriate blending weights to achieve
the desired velocity.

11 Comparison with Decoupled Systems

We evaluate our 2D navigation algorithm, MCN, with prior methods based
on velocity obstacles (ORCA) and social forces (SF). In each case, we cou-
ple the 2D planner with a motion blending based synthesis algorithm and
simulate at a fixed time-step. The MCN algorithm accounts for the full
body pose during 2D planning leading to fewer collisions in the synthesized
motion (Table 1 in the main document). Moreover, it generates smoother
trajectories at a slightly higher run time cost. Provided here are details of
the evaluation criterion and a discussion of the results.

11.1 Agent-Agent Collision Rate

We estimate the rate of agent-agent collisions by analyzing the 2D position
of the bounding disc of the underlying articulated character. Our coupled
approach ensures that the position of the disc is synchronized with that of
the root joint of the corresponding skeletal mesh (Section 3.4 of the main
document). Penetration Depth is a common metric used for quantifying



collisions. It can be defined as the minimum displacement required to elim-
inate overlap between two entities. For each pair of adjacent time steps, we
compute the maximum penetration depth (PDi j) between two agents, i and
j, over the interval bound by those time steps tk and tk+1. Assuming that
agents move linearly between time steps, the position of agent i during the
interval [tk, tk+1] can be given as pi(t) = pi + vit, tk ≤ t ≤ tk+1, where pi
and vi denote the position and velocity respectively of agent i at time t = tk .
The maximum penetration depth can be computed by finding the minimum
distance, or, equivalently, the minimum squared distance, between the two
agents, i and j, over the time interval [tk, tk+1] as:

dmin
i j = min

0≤s≤1
‖(pi +v

′
is)− (p j +v

′
js)‖2, (16)

where v′i = (tk+1− tk)vi and s =−
pi j .v

′
i j

‖pi j‖2
for relative position pi j = pi−p j

and relative velocity vi j = vi − v j . We can normalize the maximum pen-
etration depth over the time step as PDk

i j = max(0,1− dmin
i j /ri j) where ri j

denotes the sum of the radii of the two discs. Finally, the collision rate C for
the simulation can be computed by averaging all frames and agents:

C =
1

T N

N

∑
t=0

N

∑
i=0

N

∑
j=i+1

PDt
i j, (17)

where N is the number of agents, and T is the number of time steps.

Table 1 in the main document presents the collision rates of the three meth-
ods on different benchmarks (Section 7.2.1 of the main document). The
MCN algorithm accounts for the current pose of the skeletal mesh and sev-
eral human motion constraints to generate velocities that are amenable to
motion synthesis. This two-way coupling reduces the mismatch between
the 2D planning and full body synthesis, and reduces collisions. In case
of the 2-way crossflow and 4-way crossflow scenes, MCN generates sig-
nificantly fewer collisions compared to the social forces model, which is
unstable in dense conditions at a time step suitable for interactive applica-
tions. MCN also generates fewer collisions than ORCA, which is stable
and efficient but does not account for motion constraints of the underlying
character. However, MCN leads to slightly higher collisions in bidirectional
flow. This is likely because our synthesis algorithm does not support back-
pedalling which causes agents to execute complete 180 degree turns if the
new velocity is offset by more than 90 degrees from the current velocity.
This behavior can be seen in bidirectional flow scene where two popula-
tions meet other head-on. ORCA and SF do not show as many collisions
since agents abruptly alter their velocities to avoid collisions. This leads to
noisy and unnatural motions, as depicted by the higher average acceleration
values, but also reduces the collision rate. Ideally, agents should smoothly
and effectively avoid collisions. We intend to address this in future work by
introducing motions that support back-pedalling.

11.2 Trajectory Smoothness: Average Acceleration

Similar to the above section, we analyze the 2D trajectory of the root joint.
Smaller accelerations are likely to generate smoother motions. The smooth-
ness score A is simply the average acceleration over all the agents and all
the simulation steps:

A =
1

T N

N

∑
t=0

N

∑
i=0
‖v̇t

i‖, (18)

where N is the number of agents, T is the number of time steps, and v̇t
i

denotes the acceleration of agent i at step t.

In all benchmarks, MCN generates smoother trajectories compared to
ORCA and SF, as indicated by the relatively low average acceleration scores
listed in Table 1 in the main document.

11.3 Computation Time

We also compare the average 2D planning time for all three navigation
methods. The 2D update time is marginally higher for MCN due to the
additional constraints, as compared to the prior methods. Our algorithm can
interactively compute collision-free paths for a few hundred agents, even in
dense scenes such as the 4-way crossflow.


