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A B C D E
Figure 1: Our approach can quickly generate virtual avatars whichmove like their human subject using inexpensive, commod-
ity hardware. Our novel gait synthesis algorithm takes as input (A) noisy gait of the user captured using Kinect v2 sensor, and
automatically synthesizes a clean perceptually similar gait using a precomputed gait database; (B) we use commodity sensors
to generate virtual avatars and (C) animate them with the synthesized gait with minimal artistic intervention. (D,E) A virtual
avatar explores a scenario populated with virtual agents. Each agent in the crowd, as well as the virtual avatar, is captured
using our scanning and gait synthesis approach, and corresponds to a real subject.

ABSTRACT
We present a novel algorithm for generating virtual avatars which
move like the represented human subject, using inexpensive sen-
sors & commodity hardware. Our algorithm is based on a perceptual
study that evaluates self-recognition and similarity of gaits ren-
dered on virtual avatars. We identify discriminatory features of
human gait and propose a data-driven synthesis algorithm that can
generate a set of similar gaits from a single walker. These features
are combined to automatically synthesize personalized gaits for a
human user from noisy motion capture data. The overall approach
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is robust and can generate new gaits with little or no artistic inter-
vention using commodity sensors in a simple laboratory setting.
We demonstrate our approach’s application in rapidly animating
virtual avatars of new users with personalized gaits, as well as pro-
cedurally generating distinct but similar “families” of gait in virtual
environments.
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1 INTRODUCTION
Recent advances in capturing and rendering technology have en-
abled the rapid creation of virtual 3D avatars that resemble the hu-
man subject and can act as a representation of the human subject in
immersive applications, such as military training simulations, telep-
resence, virtual counseling, virtual tourism, multi-player games,
and treating psychological disorders.

Generating believable virtual avatars is a challenging and wide-
ranging goal and involves many difficult issues: appearance and
motion, as well as mechanisms of control for interactivity and
autonomy, including gesture, locomotion, multi-agent interaction,
and coordination. Studies have shown positive effects of visual
realism on virtual avatar perception [21]. There is considerable
work on capturing and rendering technologies that can enable rapid
generation of photo-realistic 3D avatars of human subjects [37].

Recent work in motion realism has demonstrated important
connections between the virtual avatar’s motions or actions and the
user’s perception of immersion [6, 15, 22]. In this paper, we mainly
address the problem of generating plausible gait for a virtual avatar
using inexpensive sensors. A person’s gait, their style of walking,
is a unique feature of their motion and has been shown to be an
effective biometric cue for visual identification [43]. Several studies
on the perception of walking gait have found that biological motion
is recognizable for both self and others in captured footage [8, 13,
20], and also when the motion is rendered on virtual avatars [32].

Despite the importance of gait in identifying with the virtual
avatar, there is little work in generating personalized gaits. Recent
developments in social VR applications, such as [3, 4], allow the
users to create highly detailed appearances for avatars, but use
either simple translations or pre-defined gaits for animating the
avatars. This can largely be attributed to the fact that simulating hu-
man locomotion is regarded as a hard problem in VR, animation and
multimedia literature. The current state of the art in synthesizing
individual human walking gaits relies on the use of motion capture
technology based on expensive and calibrated sensors. The result-
ing algorithms can generate natural-looking or plausible motion,
though the process may require significant artistic intervention or
expensive capture environments. Therefore, most databases used
for human locomotion tend to consist only of tens of motion sam-
ples of one or two human actors, which are then retargeted to
virtual avatars of other subjects [35]. While these approaches can
be effective for certain applications, the individual style of the retar-
geted persons is lost and the gait motion may not provide sufficient
fidelity for identification of self or others.

MainResultsWepresent a novel data-driven algorithm that can
generate virtual avatars that walk like the modeled human subject.
Our approach leverages simple, inexpensive sensors that cost only
a few hundred dollars and can be used in a lab or home setting.
Our formulation is based on a perceptual study that evaluates the
ability of participants to identify their captured gait in a sequence
of pairwise comparisons. We analyze the results of the perceptual
study to identify robust spatio-temporal features of human gait
that relate the physical properties of gait to perceptual evaluation
in terms of similarity with respect to a reference gait. We use this
evaluation to generate a database of labeled pairs of gait and develop
novel data-driven methods including:

• Discriminatory Gait Features: We present a novel gait de-
scriptor which is used to train a neural network that can
accurately label pairs of gait as “similar” or “dissimilar”, with
respect to user responses.

• Personalized Gaits:We propose a novel data-driven algorithm
for synthesizing personalized gaits for new users that takes
as input noisy mocap data, captured using Kinect v2 sensor,
and automatically generates a perceptually similar gait in a
few seconds.

• Gait Families: Our synthesis algorithm can be used to gener-
ate a set of gaits that share some common stylistic attributes.

• Personalized Virtual Avatars: The personalized gait can be
used to quickly animate the virtual avatar of the subject
with minimal artistic intervention. We can effectively gen-
erate personalized avatars using inexpensive commodity
hardware, such as Kinect v2 and Structure sensor [2].

The overall approach offers many benefits over the state of the
art. Our algorithm only needs a small database of diverse gaits to
automatically generate perceptually similar gaits for a large number
of users. We use features that are robust to noise in the reference
gait and can synthesize smooth gaits with no artistic intervention.
Furthermore, our technique for generating personalized avatars is
ideal for home-based scanning.

We demonstrate several applicationswithmultiple virtual avatars.
We also evaluate the performance of our synthesis algorithm by
testing it on a number of noisy gait samples of new users, captured
using a Kinect v2 sensor.

2 RELATEDWORK
In this section, we give a brief overview of prior work 3D avatar and
gait synthesis, the perception of biological motion and automatic
gait recognition.

2.1 3D Full-body Avatar Synthesis
Recent advances in low-cost scanning have lead to inexpensive
solutions for efficient 3D shape acquisition and modelling of human
subjects. Solutions such as [38, 47] employ multiple pre-calibrated
Kinect cameras to generate full body avatars. Other solutions, such
as [11, 36, 44], utilize a single 3D sensor to generate avatars. These
methods rely on inexpensive sensors such as the Kinect v2, and can
be used for home-based scanning and applications. On the other
hand, solutions such as [37] employ 100’s of cameras embedded in
a static rig to generate high quality avatars.

2.2 3D Gait Synthesis
There is extensive literature in computer graphics and animation on
synthesizing human gaits [45]. These include procedural methods,
which apply kinematic principles based on biomechanics [18, 25],
data-driven methods which generate new trajectories by blending
multiple motions [9, 23, 28], and physics-based approaches [10, 26,
27, 29, 30, 40–42, 46]. Our approach is complementary to most of
this work. For example, our similarity classifier can be used as an
optimization constraint by biped locomotion controllers to generate
gaits that are perceptually similar to a target gait.
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Figure 2: Overview: During an offline phase, we train a neural network to label pairs of gaits as “similar” or “dissimilar”
based on the results of a user study. In the online phase, we use the Kinect v2 sensor to capture the noisy gait of a new user
and automatically synthesize a clean gait that is perceptually similar to the user’s gait. We use an inexpensive commodity
sensor [2] to capture the avatar of the user, and animate it with the synthesized gait of the user. We can generate personalized
avatars of new users for VR applications in a matter of a few minutes, with minimal artistic intervention.

2.3 Perception of Biological Motion
There is extensive literature in psychology on the perception of
biological motion. Johansson [19] introduced the concept of point-
light walkers which allowed for the separation and study of motion
cues alone. Studies have shown that users can determine the gender
of a person [24], identify individual persons [13], and recognize
emotions [34] using simple point-lights walkers. Other studies
have shown that users can even recognize their own point-light
displays [8], which highlights the role of our motor system on the
perception of motion. Troje et al. [39] transformed motion capture
data into a low dimensional subspace and effectively trained linear
classifiers to detect human characteristics such as gender and even
emotional attributes. In contrast, our approach identifies spatio-
temporal features of gait that are robust to noise and can be used
to synthesize similar gaits to a reference gait.

There is considerable work related to perception of simulated
human motion. Hodgins et al. [16] observed that users are more
sensitive to motion variations rendered on a polygonal model in
comparison to a stick figure model. Pražák [35] observed that even
a small number of individual motions, as low as two or three, could
be enough to make a virtual crowd look varied. Hoyet et al. [17]
investigated the distinctiveness and attractiveness of a set of human
motions rendered on virtual avatars. Narang et al. [32] concluded
that users can recognize motion of self and others when rendered on
virtual avatars. Ourwork is complementary aswe seek to synthesize
gaits for virtual avatars that are similar to the subject’s gait.

2.4 Automatic Gait Identification
Research in the biometrics community has sought to exploit the
uniqueness of gait across individuals and to develop “gait signa-
tures” for automatic identification of individuals [12]. Many of these
methods analyze motion capture databases of human gait to deter-
mine gait descriptors that can uniquely identify an individual [5, 7].
Given their objective of automated human identification, these
methods use a purely statistical approach to analyzing human gait.
In contrast, our work seeks to identify similar and dissimilar gaits

in terms of human perception. Nevertheless, we use their findings
to guide our research in determining discriminatory gait features.

3 OVERVIEW
In this section, we introduce the notation and the terminology used
in the rest of the paper. Furthermore, we give an overview of our
novel gait synthesis algorithm.

3.1 Notation
We denote a scalar variable n with a lower case letter, and a vector
x with a bold face lower case letter. We represent the configuration
of a skeleton, also called a pose, as a state vector p ∈ R3n+3 for a
skeleton with n joints. We denote the time-varying configuration
of a skeleton, C = p(t), with an upper case calligraphic letter. Thus,
C, referred to as a motion, is comprised of a sequence ofm poses
such that C = {pt0 , ...., ptm−1 } where pt0 denotes the pose at time
t = t0. Each pose can be written as p = {root, j1, j2..., jn }, where
root ∈ R6 denotes the position and rotational data for the root
joint, and jk = {jkyaw , jkpitch , j

k
roll } denotes the rotation of the kth

joint. Furthermore, we denote the ith motion as Ci .
Unless otherwise specified, each motion C captures a gait cycle,

defined as the time interval between successive instances of the toe
leaving the ground (’toe off’) for the same foot [31]. A gait cycle is
comprised of two distinct phases i.e. stance and swing phase, for
each leg. The stance phase for the left leg is defined as the period
in which the left foot is in contact with the floor, while the swing
phase is defined as the period in which the left foot is off the floor
moving forward to the next step.

3.2 Our Approach
Our approach aims to generate virtual avatars using commodity
hardware, that reflect the appearance and walking gait of the sub-
ject(Figure 2). It is comprised of two phases:

Offline Training: We wish to be able to synthesize a gait for
a new user that reflects his/her individual style. To that end, we
conducted a perceptual study to evaluate the similarity of gaits



rendered on virtual avatars (Section 4). Participants were asked to
identify their captured gait, rendered on their virtual avatar, in a
sequence of pairwise comparisons with gaits of other participants.
Users were able to recognize their gait with 60.93% accuracy. In
addition, we observed that the recognition ability of users varied
significantly with respect to the comparison gait, suggesting that
some pairs of gaits were more perceptually similar than others.

Gait-web: The sequence of pairwise gait comparisons and the
corresponding responses of the user, are used to generate a database,
referred to as gait-web. It is shown in Figure 2 as a directed graph
where a vertex vi denotes the gait of subject i , and directed edge
e : vi → vj denotes the response of subject i when comparing
his/her gait with the gait of subject j . Responseswhere subjects were
able to recognize their gait are labelled as “dissimilar”(red), while
incorrect responses were labelled as “similar”(green). We analyze
the gait-web to design a novel gait descriptor that encapsulates
physical features that affect the perception of gait.

Online Avatar Generation: Our approach generates a virtual
avatar which walks like the modelled subject. We capture the visual
features of the virtual avatar using a commodity scanner, such as [2]
and automatically rig the avatar mesh using the method proposed
by [14]. We capture a sample of the user’s gait through a series of
walking trials recorded by a Kinect2 sensor. The data captured by
the Kinect2 is noisy; often, the sensor records jitter in joint posi-
tions and discontinuities in the positions of the detected subject’s
limbs. As such, the Kinect2 data is often not directly suitable for
synthesizing a gait for a virtual avatar. Instead, we utilize this noisy
data, as well as the gait-web, to synthesize a non-noisy perceptually
similar gait for the virtual avatar, as explained below.

From the noisy data captured by the Kinect2 sensor, we extract
robust spatio-temporal features that are used to query the classifier
and label the precomputed gaits in the gait-web as “similar” or
“dissimilar” with respect to the user’s gait. We synthesize a new gait
by blending the gaits labelled as “similar” to the user’s captured
gait. Our approach can automatically synthesize the gait of a user
in a few seconds. The overall process to generate the personalized
avatar, including motion capture, avatar capture and animation,
requires only a few minutes with minimal artistic intervention.

4 PERCEPTUAL EVALUATION OF SELF
MOTION

We conducted a user study to evaluate the physical features that
contribute to the perceptual similarity of distinct gaits, rendered on
the same avatar. The experimental details of the study are described
below.

4.1 Participants
Our study consisted of 22 participants (11 male, x̄aдe = 27.13, saдe
= 6.24) recruited from the staff and students of a large west coast
university. Data for 5 participants after the on-site portion was
determined to be too noisy by means of visual inspection, and was
discarded.

4.2 Procedure
Participants were welcomed and were instructed on the overall
process and purpose of the study. They signed a consent form

and provided demographic information about their gender and
age. Participants were then asked to step inside a photogramme-
try stage and stand still for 5 seconds for scanning. More details
on the photogrammetry stage and scanning can be found in [32].
Following the 3D scan, participants were instructed on wearing
the motion capture suit, and were provided help in properly wear-
ing the suit. Once the suit was calibrated, they were instructed
to perform several motions in an open unobstructed space. These
included walking in a straight line for 10m at a “comfortable pace”,
walking in a circle of radius 3m, turning in place, side stepping, etc.
We utilized the captured data to generate a questionnaire that was
sent to the participants three weeks after the initial data capture.
Details of the questionnaire are provided in Section 4.3.

4.3 Experimental Design
The questionnaire was divided into two sections. The first section
consisted of four pairs of motion clips presented in a 2-Alternative
Forced Choice design. The questions posed in this section explore
the effectiveness of an avatar representation for self-identification
as part of ongoing research and are not reported as part of this
analysis. The second section of the questionnaire focused on ex-
ploring similarities between the gaits of the subjects. Each subject
was presented with a set of video pairs presented side by side. One
of these was the subject’s own gait presented on their virtual avatar
and the other was the gait of a different participant of the same
gender presented on the subject’s avatar. For each pair of motion
clips, the participants were asked to rate the clips using a 7 point
Likert scale with values labeled (Left much better, Left Better, Left
Slightly Better, No Difference, Right Slightly Better, Right Better,
Right Much Better). In this response format, a value of 1 indicates
a strong preference for the clip listed on the left of the comparison.
Each subject compared their gait to every other subject of their
gender. Subjects were posed two questions per comparison:

• Q1Which video shows a better depiction of yourself?
• Q2Which video depicts your gait (walking style)?

Variables: Independent: In this study, the independent variable
is the specific gaits being displayed in a comparison. Dependent:
The dependent variable in the study is the participant‘s response
to the questions for each pairwise comparison.

4.4 Results
We recode the responses of the participants for the two aforemen-
tioned questions such that a value of 1 indicates that the participant
rated their motion as a “Much Better” depiction of themselves, 4
indicates that they rated “Neither” clip to depict themselves and
7 indicates that they rated the reference motion to be a “Much Bet-
ter” depiction of themselves. Figure 3 depicts the frequency of the
user responses for the questions described earlier. On the question
of depicting themselves (Q1), participants correctly identified the
avatar with their motion with 51.56% accuracy i.e. a response of 1,
2 or 3. Similarly, on the question of depicting their gait (Q2), partic-
ipants correctly identified the avatar with their motion with 60.93%
accuracy. We focus on the participant responses on the explicit
question of gait (Q2) for the remainder of the study, and summarize
our findings as follows:



Figure 3: Frequency of user response. The figure depicts user
responses for the question on depiction of self and for the
question on depiction of one’s gait, in a series of pairwise
comparisons with reference walkers. A response of 1 indi-
cates strong preference for self-motion, 7 denotes strong
preference for the reference gait, and 4 denotes a preference
for neither of the two gaits. Users correctly identified their
own gaits in 60.93% of the 128 total responses. Furthermore,
21.09% of the participants rated their gait with the highest
score possible i.e. 1.

(1) Recognition Accuracy: Participants correctly identified their
own gaits in 60.93% of the 128 total responses. Furthermore,
21.09% of the participants rated their gait with the highest
score possible, implying confidence in their responses.

(2) Gait Similarity: The participants ability to recognize his/her
gait varied significantly with respect to the reference gait
which suggests that some pairs of gaits are perceptually more
alike than others.

(3) Asymmetrical Responses: The responses of participants are
asymmetrical. For example, subject A recognized his/her
motion in comparison to subject B, but subject B failed to
recognize his/her motion in comparison to subject A.

We analyze the compared gaits to determine physical features
that are discriminatory in terms of perception, and present new
techniques for synthesizing perceptually similar gaits, as described
in the following section.

5 DATA-DRIVEN GAIT SYNTHESIS
In this section, we use the findings of the study described above
and identify physical features that affect the perceptual similarity
or dissimilarity of two gaits. We propose a perceptual similarity
metric comprised of these features and demonstrate its application
in synthesizing perceptually similar (and dissimilar) gaits with
respect to a reference gait.

5.1 Generating the Gait-Web
Based on the findings of Section 4.4, we map the user responses on
the 7 point Likert scale to a label l ∈ {−1, 1}. A response of 3 or
less denotes that the participants correctly identified their own gait,
thereby implying that the compared gait was sufficiently dissimilar.

Such pairs of dissimilar gaits are assigned the label l = 1. Conversely,
a response of 5 or more denotes that the participants incorrectly
identified the compared gait as their own, thereby implying that
the compared gait was sufficiently similar. Such pairs of similar
gaits are assigned the label l = −1. We use F to denote the set of all
pairwise motion comparisons and L to denote the corresponding
set of labels such that Lp denotes the label for the pth motion
comparison Fp =< Ci ,C j >. We use the term gait-web to describe
the set of motion comparisons F and labels L. We depict the gait-
web pictorially using a directed graph in Figure 2.

5.2 Physical Features for Gait Perception
We identify physical features of human gait that play an important
role in the perceived similarity or dissimilarity of two gaits. We
analyze the set F of motions-pairs in the gait-web using a wide
number of features, including time series data for all or some joint
positions, rotations, decomposition of the entire motion; and using
all combinations of the leg, arm and torso joints. We find that the
rotational pattern of the hips and forearms in the saggital plane
are highly correlated with the ratings-based labels of similarity and
dissimilarity. We describe these features below:

5.2.1 Rotational Pattern of Hips. Let pLhip and pLknee denote
the position of the left hip and left knee joints, respectively. The
left hip rotation θ

Lhip
k at pose k can be computed as:

θ
Lhip
k = arccos( pLknee − pLhip

∥pLknee − pLhip ∥
.f̂), (1)

where f̂ is a unit vector denoting the forward direction of the
skeleton. For a given motion sampled at frequency t = 1/δt , pose k
denotes the configuration of the skeleton at time t = δt∗k . Thus, the
set ΘLHip = {θLhipk },k = 1, .., (m − 1) for allm poses of a motion
is a time series data describing the rotation pattern for the left
hip [31]. The rotational patterns of the hips is periodic and can be
efficiently represented by a sinusoidSLhip (A,ϕ,o), parametrized by
amplitudeA, phase ϕ, and vertical offset o (Figure 5). The sinusoidal
representation smooths out the noise in the time-series data, in
addition to significantly reducing the dimensionality of the data.
Similarly, we can compute a sinusoidal representation, SRhip , for
the rotation pattern for the right hip.

5.2.2 Rotational Pattern of Forearms. We observe that the ro-
tation of the forearm relative to the forward direction also has a
significant impact on the perception of gait, determined by the user
responses. Similar to Eq. 1, the left forearm rotation θLelbowk at
pose k can be computed as:

θ
Lf orearm
k = arccos( pLwrist − pLelbow

∥pLwrist − pLelbow ∥
.f̂), (2)

where pLelbow and pLwrist denote the position of the left elbow
and left wrist joints, respectively. We describe the rotation time
series data for the left and right forearms over the entire motion
using sinusoid’s SLf orearm and SRf orearm , respectively.

5.2.3 Other Features. We contiguously divide the time series
data for a full walk cycle comprising of four steps into four equal
sized bins. In doing so, a bin approximately stores time series data



Figure 4: Comparing synthesized gait with gait extracted from noisy Kinect 2 sensor data. (Top Row) We capture the gait
of a subject using commodity depth sensors. The gait captured by the sensor exaggerates arm distances from the body and
generates overly stiff, unnaturalmotion. (BottomRow) Our synthesized similar gait captures the arm and leg forwardmotions
of the captured gait while generating more appropriate arm swing width and more natural torso motions.

for a particular phase of the gait cycle, such as the swing phase.
We compute the maximum separation distance between the two
hands, dhDist , and the linear velocity of the root joint, described
by mean µr t and standard deviation σ r t , for each bin. As a result,
the original time series motion data is represented by the vector
d ∈ R12, given as d = {dhDisti , µr ti ,σ

r t
i }∀i ∈ {1, 2, 3, 4}.

Figure 5: Perceptually important features of gait.We use the
responses of the user to generate a labelled gait database,
and performan exhaustive analysis over the feature space of
gaits to determine the perceptually important features. We
observed that the hip rotation patternwith respect to the for-
ward vector is a key factor in distinguishing between gaits.
The figure depicts the mean and relatively large variance
of the hip rotation pattern over a population of 25 healthy
adults. We use a sinusoid approximation to efficiently repre-
sent the rotation pattern.

5.2.4 Perceptual Similarity Metric. We describe each gait in our
gait-web using a feature descriptor x ∈ R24 as:

x = {SLhip ,SRhip ,SLf orearm ,SRf orearm , d}. (3)

This feature descriptor is used as the perceptual similarity metric
in order to synthesize new gaits from a precomputed database.

5.2.5 Gait Classification. Weuse a supervised learning approach
to automatically classify pairs of gait as similar or dissimilar. Our
classifier based on the following training set.

Training Set: We use the set F of motion pairs to generate a
feature set X. For each gait cycle, Ci , in the gait-web, we compute
the gait descriptor xi . We use Principal Component Analysis (PCA)
to reduce the dimensionality of the features and use pi to describe
the gait descriptor in terms of its principal components. Given the
kth motion pair, Fk =< Ci ,C j >, we compute Xk as the concate-
nation of pi and pj , the corresponding feature descriptors for the
gaits of subjects i and j, respectively. The set L of user-assigned
ratings of similarity/dissimilarity is used as the associated “truth”
labels. Thus, the pairs < X,L > comprise the training set.

We reduce the dimensionality of the feature space using PCA
and train a Multi-Layered Perceptron (MLP) to accurately label
pairs of gaits as similar or dissimilar. The detailed analysis and
implementation of this classifier is given in Section 6. Next, we
describe our approach for generating labels for each gait in the
database with respect to a reference gait.

5.3 Online Data-driven Gait Synthesis
Given a reference gait, our approach can automatically synthesize
a “similar” gait on the fly using the similarity metric. Let Cquery

and pquery denote the reference gait and its corresponding feature
descriptor in terms of principal components. We generate a test set
F test , where F test

i is computed as the concatenation of pquery

and pi , the feature descriptor for the ith subject in the gait-web.
We classify the featureset F test to determine the set of similar



s

and dissimilar gaits in the gait-web with respect to Cquery . We
then blend the set of database gaits determined by the classifier as
similar to Cquery with weights set to the inverse of the euclidean
distance of the corresponding feature vectors.

5.4 Procedurally Generated Families of Gaits
Our approach can be used to synthesize families of distinct yet
stylistically similar gaits. As described in the previous section, we
use an input gait Cquery to retrieve a set of similar database gaits,
and compute a weight vector w that reflects the similarity of the
motions in the database to Cquery . Let ϵ denote a user defined
threshold, andq denote the number of similar gaits and equivalently,
the dimensionality ofw. We compute a random unit vector n̂ ∈ Rq ,
such that w‘ = ϵn̂wT . Next, we reset the weights as w = w +w′,
and synthesize a new gait using the new weight. Essentially, we are
using a randomwalk approach inRq , starting at the original weight
vector, and synthesize a new gait at each iteration. In practice, all
these gaits are similar to the reference gait based on the perceptual
metric.

6 PERFORMANCE & RESULTS
In this section, we describe the training methodology and accuracy
of our binary classifier for identifying similar/dissimilar gaits. We
also demonstrate applications of our approach for generating virtual
avatars with personalized gaits and highlight its performance.

6.1 Gait Classification

Num. points Precision (%) Recall (%) F1-score (%)
Similar 7 83 88 85

Dissimilar 16 94 92 93
Total 23 91 91 91

Table 1: Classifier Accuracy. We train a Multi-layered per-
ceptron on a database of 116 pairwise gait comparisons to
predict the similarity or dissimilarity of two gaits, where the
ground truth was determined using a user evaluation. This
table shows the mean precision (p), recall (r ) and F1-scores
(2 ∗ p ∗ r/(p + r )) computed over six trials on a testing set of
23 gait comparisons.

Our gait-web comprises of 114 user responses and 25 distinct
gaits. These gaits are diverse and have been evaluated on a wide
number of users and used to derive our perceptual metric. We train
a Multi-Layered Perceptron (MLP) comprising of one hidden layer
and ReLU activation function nodes using k-fold cross validation.
We observed that the discriminatory gait descriptor, described in
(Section 5.2.4) achieved 91% accuracy, measured using the mean F
score on the testing set (Table 1). Furthermore, the F-score’s were
similar for both classes of gait i.e. the prediction and recall ability
of the classifier was similar for both the similar and the dissimilar
gaits.

6.2 Feature Evaluation
We evaluate our approach by synthesizing similar gaits for several
actors using only a small gait database of 20 gaits. As a means

of comparison, we also use our classifier to determine the most
dissimilar gait from the database based on the metric. Figure 7
visualizes the sine wave approximation of the rotational pattern
of the left hip, one of our four gait features, for one of the test
subjects. It can be observed that the sinusoid for the similar gait is a
better approximation of the motion capture gait, as compared to the
dissimilar gait. Overall, the synthesized gait is visually similar to the
motion-captured gait, as depicted in Figure 4.We observed that both
the motion capture gait and the synthesized gait have similar hip
swivels and knee flexion whereas the dissimilar gait has a distinct
posture and stride pattern. Further comparisons are highlighted in
the video that demonstrate the benefits of our approach.

6.3 Performance
Given an input gait cycle, our algorithm can automatically synthe-
size a similar gait in 3 − 15 seconds depending on the number of
gaits in the database used by the blending algorithm. Overall, we
can synthesize a personalized avatar for a new subject in approx
7−10 minutes, including motion capture, gait extraction using com-
mercial solutions, synthesis of similar gait, and motion retargeting
to animate the virtual avatar in a virtual environment. The process
requires minimal artistic intervention such as defining the region
of interest in the motion capture data for skeletal tracking, and
clipping the captured walk into a full gait cycle. These steps can be
easily automated.

6.4 Applications
Our approach can be used to capture and generate the personalized
avatars of subjects that resemble the subject in both motion and
appearance. In contrast to the current state of the art which relies
on elaborate and expensive motion capture systems, our approach
leverages commodity hardware such as Kinect v2 and the Structure
IO 3D sensor, software such as ItSeez3D scanning software [1], and
our novel gait synthesis algorithm to quickly capture and animate
virtual avatars.

We also leverage a small database of gait motions to create a
large number of distinct motions and thus, generate crowds with
motion variety (Figure 6(Right)). Each individual in a crowd can be
given a distinct gait despite the lack of motion-capture data for the
individuals being represented. Therefore, it improves the fidelity
and perception of the crowd.

In addition to generating a similar gait for a user, our approach
can synthesize families of gaits that preserve the distinctive style of
a reference walker by using different blending weights. Thus we can
rapidly create sets of distinct gaits with similar styles. Our technique
can be leveraged to generate set of similar moving characters, e.g.
soldiers or crowds, for entertainment such as movies or games
using a single reference actor.

More details on the implementation and effectiveness of our
approach can be found in [33].

7 CONCLUSIONS, LIMITATIONS & FUTURE
WORK

We have presented a novel approach for synthesizing virtual avatars
with personalized gaits using commodity hardware that requires



Figure 6: Generating crowds with diverse motions: Current animation systems often use a small set of template motions to
animate large crowds, which can appear to be cloned or unnatural. (Left) All avatars are animated with an identical gait, indi-
cated by the perfect synchronicity in arm and leg movement across characters. (Right) Our approach generates personalized
gaits for each virtual avatar, leading to diverse motion styles and natural appearing crowds. The highlighted avatar exhibits
particularly salient differences between the individual and cloned gait, as can been seen in the attached video.

Figure 7: Comparing gait features of synthesized gait with
Kinect 2 sensor data. Our data-driven gait synthesis algo-
rithm can effectively synthesize clean gaits for new users
that have similar perceptually important features, such as
hip rotation patterns, to the noisy motion captured gaits.

minimal artistic intervention. Our formulation is based on a data-
driven perceptual similarity metric that captures the discriminatory
features of a human gait. We trained a classifier on a database of
gait pairs and demonstrated its use in computing a personalized
gait for a new user. Our gait synthesis algorithm is robust and
can automatically handle noisy sensor data. Overall, our approach
can be used to quickly model personalized avatars and is ideal for
home-based scanning.

Our approach has some limitations. It assumes that the precom-
puted database has sufficient number of gaits of diverse style. The
final set of gaits is a function of the number and variations available
in the precomputed database. In many ways, the accuracy of the
gait classification scheme and consequentially, the quality of the
synthesized gaits depends on this database. Furthermore, the per-
formance of our blending approach can vary based on the choice of
weights. The choice of physical features relevant to gait perception
may not work well in all cases. For example, it is unclear whether
the proposed features are critical for other motions such as turning,
sidestepping etc.

There are many avenues for future work. One of the challenges
is to develop a large database of clean gaits that represent different

samples corresponding to age, height, gender, ethnic background,
etc. We may like to re-evaluate our proposed gait descriptor on a
large database. We would like to investigate the perception of other
types of motion such as turning, sidestepping etc. and evaluate
our proposed feature descriptor on such non-periodic motion. We
would like to further evaluate the performance of our gait synthesis
algorithm in terms of the appearance or perception of the avatars
in a VR environment. We would also like to completely automate
our pipeline and enable animating avatars without any artistic or
user intervention. Finally, we would like to evaluate the perceptual
benefits of our gait generation algorithm for social VR and crowd
simulation applications.
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