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ABSTRACT

We present an interactive algorithm to generate plausible movements
for human-like agents interacting with other agents or avatars in a vir-
tual environment. Our approach takes into account high-dimensional
human motion constraints and bio-mechanical constraints to com-
pute collision-free trajectories for each agent. We present a novel
full-body movement constrained-velocity computation algorithm
that can easily be combined with many existing motion synthesis
techniques. Compared to prior local navigation methods, our for-
mulation reduces artefacts that arise in dense scenarios and close
interactions, and results in smoother and plausible locomotive be-
haviors. We have evaluated the benefits of our new algorithm in
single-agent and multi-agent environments. We investigated the
perception of a single agent’s movements in dense scenarios and
observed that our algorithm has a strong positive effect on the per-
ceived quality of the simulation. Our approach also allows the user to
interact with the agents from a first-person perspective in immersive
settings. We conducted a study to investigate the perception of such
avatar-agent interactions, and found that interactions generated using
our approach lead to an increase in the user’s sense of co-presence.

1 INTRODUCTION

The problem of generating realistic movement and behavior of
human-like agents is important for many virtual reality applications,
such as training simulators, entertainment and games, treatment of
psychological disorders etc. Many such applications also enable
the user to actively participate in an immersive virtual environment
by embodying a virtual avatar i.e. a perceptible digital represen-
tation whose behaviors reflect those executed by a specific human
being [18, 31]. Prior studies have established that human-like agents
can elicit social responses [4], enhance the user’s sense of presence
in the virtual world [25], and generate plausible interactions between
agents and avatars [20].

One of the major challenges is to generate plausible movement
and behavior for each virtual agent as it interacts with other agents
and avatars in the scene. The naturalness of the interaction is gov-
erned by the trajectory of each agent, as well as the full-body anima-
tion or actions [24]. Studies have shown that many full-body move-
ments, such as shoulder motions, gestures, or gaze, can significantly
impact the perceived naturalness and the sense of presence [9,15,21].

There is extensive work on human motion simulation and
collision-free navigation in computer animation, crowd simulation,
and robotics. Each human is represented as an articulated agent with
tens of degrees-of-freedom (DOFs). Most human animation systems
tend to use motion capture (Mocap) data, which is mainly used to
compute the movement of a single human and is not well suited
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to simulate a large group of human-like agents at interactive rates,
especially in dense scenarios.

Prior interactive simulation algorithms decompose the movement
interaction problem into 2D velocity computation or path planning
for simple 2D agents, followed by 3D human motion synthesis.
There is a large body of work [12, 35, 36] that uses simple 2D
representations for each agent (e.g., a disc) and computes planar
collision-free trajectories. This is followed by generating full-body
animation for each human along a trajectory as a post-process [39].
This two-step decomposition overcomes the computational complex-
ity of simulating high-dimensional agents for interactive applications.
However, these methods do not account for many kinematic and
dynamic stability constraints that are inherent to human locomotion
which can result in artefacts especially when simulating movement
interactions in dense spaces.

Main Results: We present Body Aware Movement, or BAM, a
novel velocity computation algorithm for interactive multi-agent
simulation that takes into account high-dimensional human motion
constraints and computes collision-free trajectories for each agent.
Our approach is designed to generate plausible full-body motion for
multiple human-like agents in a virtual environment and to simulate
the movement interactions with other agents and avatars (Section 3).
Overall, BAM offers the following benefits over prior 2D velocity
computation methods:

• BAM reduces the dimensionality mismatch between 2D navi-
gation and high-DOF motion synthesis by deriving full-body
motion constraints from captured data and established princi-
ples of bio-mechanics, and mapping them efficiently to the 2D
velocity plane.

• BAM is general and can be easily integrated with many existing
full-body animation or simulation methods.

• Our approach accounts for the presence of a tracked real user in
an immersive virtual environment, and generates collision-free
and plausible avatar-agent interactions.

• BAM can be easily parallelized on multiple cores and used to
simulate hundreds of 2D agents at interactive rates. Moreover,
it can simulate and render movement interactions of 60+ full-
body agents at VR friendly rates.

We have integrated our system with the Unreal game engine
to render the agents in real-time (Section 5). We demonstrate the
benefits of our algorithm in generating agent-agent and avatar-agent
interactions in many challenging scenarios. We have conducted an
extensive user evaluation which highlights the benefits of BAM over
prior methods in both immersive & non-immersive settings:

• Evaluating Single-Agent & Agent-Agent Movement In-
teractions in Non-Immersive Settings: We conducted two
within-subjects user studies in non-immersive settings i.e. us-
ing a monitor display, which compared BAM to prior inter-
active methods [12, 36]. The first evaluated the plausibility
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Figure 1: Benchmarks: Our algorithm can generate plausible agent-agent & avatar-agent interactions in complex scenarios including: (a-b)
Antipodal circle scene with 17 human-like agents, (c) Dense 4-way Crossing, (d) Tradeshow with 50 agents and (e) Shibuya crossing with 50
agents. We can simulate and render tens of full-body agents at 60 fps on a multi-core desktop PC.

(A) (B) (C)

Figure 2: Avatar-agent interactions: Our approach provides the
user with an (A) immersive room-scale VR experience from a first
person perspective using the HTC Vive. The tracked movement of
the user is mapped to a virtual avatar. We conduct a user study
where the user is tasked with (B) moving objects (red box) in a virtual
environment. (C) Virtual agents account for the presence of the avatar,
and compute smooth, collision-free full-body movements.

of a single agent’s movement with static and dynamic ob-
stacles while the second study evaluated the plausibility of
multi-agent interactions in dense spaces. In both studies, par-
ticipants indicated significant preference for BAM in terms of
both navigation and motion plausibility over prior methods.

• Evaluating Multi-agent & Avatar Movement Interactions
in Immersive Settings: We evaluated the perceptual benefits
of BAM in simulating multi-agent and avatar movement inter-
actions in immersive settings using the HTC Vive and a 3.8
x 3.8 m tracking area. We found a significant preference for
BAM compared to prior methods [12,36] in terms of perceived
collision avoidance behaviors, as well as co-presence in the
virtual environment.

2 RELATED WORK

In this section, we give a brief overview of prior work in generating
and evaluating passive agent-agent interactions and avatar-agent
interactions.

2.1 Agent-Agent Interactions
There is extensive prior work on simulating 2D interactions and
collision avoidance for multiple agents.

2D Interactions & Collision Avoidance: 2D multi-agent colli-
sion avoidance techniques can be broadly classified as macroscopic
models and microscopic models. Macroscopic models [35] com-
pute the aggregate motion of the agents by generating fields based
on continuum theories of flows. Microscopic models, also called
agent-based models, compute trajectories for each individual agent
by decomposing the trajectory computation problem into two phases:
global planning and local navigation. The global planners [16] com-
pute a collision-free path through the environment considering only
static obstacles. The local navigation algorithms [12, 30, 34, 36]
adapt the local motion of each agent to avoid collisions with dy-
namic obstacles and other agents. The 2D trajectories generated

by these approaches serve as input for full body motion synthesis
or animation. There is extensive literature in computer graphics
and animation on generating human like motion [39] including data-
driven [28], procedural [6], and physics-based methods [11]. In
most cases, the computed 2D trajectories do not account for human
motion constraints, and may lead to collisions and other artefacts in
the motion synthesis stage.

Non-locomotive Interactions: There is considerable work on
synthesizing natural-looking interactions between virtual characters.
Many of these methods rely on spatial discretization [10, 29, 41],
or may not provide collision-free guarantees [14] for navigation-
based behaviors. In contrast, our approach is more suitable for
navigation-based behaviors and can compute collision-free trajecto-
ries for hundreds of agents in dense environments.

2.2 Avatar-Agent Interactions in VR

Prior research on avatar and single agent interactions in VR has
shown that both behavior and appearance have a strong effect on
the user’s sense of presence in immersive virtual environments [1].
In fact, non-interactive virtual agents can negatively impact the
user’s sense of presence [32]. There is extensive work in embod-
ied conversation agents (ECA) [38], in which a single animated
anthropomorphic agent interacts with the user. There is also prior
work in the context of interactive multi-agent simulations. This
includes studying navigation behaviors and proxemics in controlled
simulations [7, 18, 27], and modeling approach behaviors to enable
face-to-face avatar-agent interactions [26]. Recent studies have also
highlighted the role of collision avoidance on the part of virtual
agents and its effect in increasing the sense of perceived realism,
and overall presence in the simulation [15, 33]. However in both
of these studies, collision avoidance is treated as a binary variable
which is either enabled or disabled. Instead, we compare our pro-
posed navigation algorithm BAM with prior collision avoidance
methods and find that the perceived plausibility of the resulting inter-
actions varies considerably with respect to the underlying collision
avoidance algorithm.

2.3 Human Motion Constraints

Human locomotion consists of cyclic events generated by complex
intersegmental co-ordination among different muscle groups. It is
constrained by kinematic limits [5, 17] as well as postural and dy-
namic stability constraints [19, 40]. Some physics-based methods
seek to account for many of these human motion constraints while
computing full body movement for agents but are not suitable for
interactive applications [23]. There are also interactive methods
that make simplifying assumptions to reduce the complexity. How-
ever, these methods may not generate collision-free motion in dense
spaces [28], or may use footstep based planning [2, 3] and impose
strict constraints in motion synthesis to follow the generated foot-
steps which can impact the plausibility of the resulting motion. In
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Figure 3: Overview: We highlight various components of our in-
teractive algorithm to generate plausible collision-free movements
for multiple human-like agents. The core of our approach is a 2D
velocity computation algorithm called Body Aware Movement (BAM)
which takes into account human motion constraints while efficiently
computing feasible 2D trajectories. We couple BAM with a full-body
motion synthesis algorithm and enable a tracked user to interact with
the agents via their virtual avatar.

contrast, our approach (BAM) is less restrictive and can be combined
with many existing motion synthesis techniques.

3 OVERVIEW

In this section, we introduce the notation and terminology used in
the rest of the paper and give an overview of our approach.

3.1 Notation and Assumptions
We denote a scalar variable n with lower case letters, a vector x with
a bold face lower case letter, a set C of entities with an upper case
calligraphic letter. Each agent i in the simulator has an associated
skeletal mesh, that is used for full-body motion synthesis. Each
configuration qi of the skeletal mesh is defined using the degrees-
of-freedom (DOFs), including the 6-DOF root pose and the joint
angles represented using n-dimensional vector space. We define the
simulator state S as the union of all entities in the scene, including
obstacles in the environment and the overall state space Q = ∪iqi.

We project the geometric representation of each skeletal mesh in
Rn space to the R2 plane and bound it with a tightly fitted circle of
radius ri where ri is equal to half of the shoulder width of the skeletal
mesh. Each skeletal mesh with 6-DOF root joint qrt

i is represented
in the 2D multi-agent simulator by a disc of radius ri positioned at pi,
where pi is simply the projection of the root joint qrt

i on the 2D plane.
The multi-agent navigation algorithm generates trajectories that
correspond to the XY-projection of the 6-DOF root joint qrt

i of the
associated skeleton. These collision-free trajectories are represented
as 2D time varying functions representing the position pi(t) and
velocity vi(t).

3.2 Human Motion Constraints
Human locomotion requires complex control and coordination be-
tween multiple limb and body segments. It is characterized by
the periodic movement, or ‘gait cycle’, of each foot from one po-
sition to the other, in conjunction with sufficient ground reaction
forces [19, 40]. The gait cycle can be divided into six distinct pe-
riods that comprise the stance and swing phase [37]. For a gait
cycle starting with the right foot leaving the ground, the first three
phases i.e. initial double support, single limb stance, and second
double support comprise the left stance phase; while the next three
phases corresponding to initial swing, mid swing and terminal swing
comprise the left swing phase. Despite its complexity, the full-body
human motion corresponds to smooth, energy-efficient trajectories
that satisfy several constraints, including:

• Kinematic Motion Constraints: Human movement is con-
strained, at the anatomical level, by the limits of joint rotations

Figure 4: Human Kinematic Constraints from Captured Data: We
derive kinematic constraints by analyzing a database of human mo-
tions and formulate them as half-plane velocity constraints, depicted
in blue. (a) These constraints reflect the asymmetry in human motion
during forward gait and (b) limit implausible velocities during turning.

and accelerations [5,17]. These constraints limit the set of spa-
tial configurations, and consequentially the resulting trajectory.

• Stability and Balance Constraints: Stability, or control of
balance, describes the dynamics of body posture to prevent
falling. Balance while standing, or ‘static stability’, can be
achieved by keeping the body’s Center of Gravity (COG)
within the ‘base of support’, i.e. the area defined by the ground
contact points. However, the walking motion requires moving
the COG outside the base of support and yet preventing the
body from falling, a condition described as ‘dynamic stability’.
During gait initiation, one voluntarily initiates a forward fall to
accelerate the COG ahead of the base of support. It is impera-
tive that the swing foot is placed such that the COG returns to
within the base of support, and thus prevents the fall [40].

• Collision-free: Humans are adept at finding energy-efficient
collision-free paths, even in dense crowds.

Prior work in robotics on modeling these kinematic and stability
constraints is limited to non-interactive applications and may not
generate plausible motion. Instead of exactly modeling these con-
straints using the first principles, our velocity computation algorithm
(BAM) accounts for these constraints in a manner that can generate
plausible full-body motion and movement interactions for multiple
agents (Section 4).

3.3 Human Motion Synthesis
Our goal is to reduce the dimensionality mismatch between 2D
velocity computation and high-DOF motion synthesis that exists
in prior two-step decomposition methods. Existing motion syn-
thesis methods offer tradeoffs between naturalness and control of
the synthesized motion [39] and often, infeasible 2D trajectories
can result in artefacts which are magnified in immersive settings.
BAM accounts for many human motion constraints and seeks to
produce feasible 2D trajectories. It can be easily integrated with
any existing motion synthesis technique capable of following a root
velocity. However, the choice of the motion synthesis algorithm can
significantly impact the perception of the virtual agents.

3.4 Simulating Multi-agent & Avatar Interactions
Figure 3 highlights our overall velocity computation and full-body
motion algorithm and the various components. At every time-step,
we first synchronize the 2D position and orientation of the agent
with the root joint of the corresponding skeletal mesh. We use
a Behavioral Finite State Machine (BFSM) to map the time and
simulator state into a goal position gi for agent i. Next, we employ a
navigation mesh to plan a collision-free path with respect to static
obstacles in the environment. The global planner maps the simulator
state and the agent’s goal position into a instantaneous preferred



Figure 5: Dynamic Stability Constraints We compute half-plane
velocity constraints (yellow) to account for the constrained motion of
the center of gravity (COG) during a gait cycle [40]. (a) During gait
initiation, as the left limb lifts off the ground, the COG is constrained
by the stance foot. (b) As the left limb moves forward, the constraint
is relaxed to allow the COG to move forward and away from the right
limb.

velocity, vpre f
i , and preferred orientation, od

i . By definition, the
preferred velocity does not take into account the other agents and
local conditions. We use a “social forces” based method [12] to adapt
the preferred velocity to local dynamic conditions. The adapted
preferred velocity, vpre f∗

i , is used to simply influence the agent’s
plan but does not account for human motion constraints (Section 3.2),
nor does it provide sufficient collision avoidance guarantees. We
then take into account interactions between an agent and an avatar,
as well as agent-agent interactions.

3.4.1 Avatar-Agent Interactions

The user embodies a virtual avatar and is provided with a first person
perspective of the virtual environment rendered via a head-mounted
display (Figure 2). Our framework is agnostic to the specific input
method used to track the user’s movement in the virtual environment,
and maps the input to the user’s avatar. The embodied avatar is free
to move around in the virtual environment populated with virtual
agents. The virtual agents treat the avatar as a “special agent” i.e.
they do not assume perfect reciprocity in collision avoidance.

3.4.2 Agent-Agent Interactions

The BAM algorithm is used to generate constraints on human mo-
tion based on the current state of the skeletal mesh. The motion
constraints, combined with collision-free constraints, are solved to
yield a feasible 2D velocity for the agent. Finally, we synthesize the
full body motion for the agent.

4 BAM: OUR VELOCITY COMPUTATION ALGORITHM

In this section, we present our novel 2D navigation algorithm that
takes into account the current state of the skeletal mesh and many
human motion constraints to generate 2D trajectories that are feasible
for full-body motion synthesis.

4.1 Full-body Kinematic Constraints from Mocap

Prior work in kinematic analysis of human gait shows that gait
parameters can vary not only across speeds and subjects, but even
from trial to trial [5]. However, analysis across a large population of
healthy adults suggests that, for a given speed, these parameters have
limited variability and can be easily bounded [17]. To that end, we
analyze a motion database with a broad sampling of human motions,
and derive the bounds on kinematic constraints in the velocity space.
Let each motion in the database be defined based on the average
scalar speed v f , turning rate ωt , and strafing rate ωs. We begin by
first mapping the motion examples, where ωs = 0, to velocity space.
For example, the motion m = {v f ,ωt ,0} can be mapped to the 2D

velocity vmotion = {vx,vy} as:

u = {cosω
t ,sinω

t} (1)

vmotion =
u
‖u‖

.v f , (2)

where vmotion represents the average velocity of m.
We wish to limit the set of feasible velocities to the space that

is specified by the motion database. We formulate the space using
half-plane constraints that can be combined with the other con-
straints and efficiently solved. It is likely that the wrapping polygon
for the set of vertices is non-convex and thus, the corresponding
half-plane constraints will cull velocities supported by the database.
We overcome this by first computing a convex hull of the set of
motion examples to yield a clockwise ordered set of n vertices
V = {vmotion

0 ,vmotion
1 , ....,vmotion

n−1 }. Next, we compute half plane con-
straints for each each edge of the convex hull (Figure 4) and denote
the set by Cmotion. For two consecutive vertices vmotion

i = {vx
i ,v

y
i }

and vmotion
i+1 = {vx

i+1,v
y
i+1}, the half-plane constraint, Cτ

i , can be
defined by the point p and direction vector d given as:

p = vmotion
i , (3)

d =
vmotion

i −vmotion
i+1

‖vmotion
i −vmotion

i+1 ‖
. (4)

By considering the convex hull of extreme motions in the parameter-
ized space, we have likely included feasible velocities that are not
contained within the motion database. These include the velocities,
where the character is turning behind i.e., |ωt |> 90. We address this
issue by dynamically adding half-plane constraints, if the preferred
velocity, vpre f , suggests a turn of more than 90 ◦ from the current
orientation of the character. Based on this formulation, we account
for the asymmetry in the human motion i.e., turning motion is more
restrictive than forward motion.

4.2 Dynamic Stability Constraints
During gait initiation, lifting the swing limb greatly narrows the base
of support, causing the Center of Gravity (COG) to move towards
the stance limb. This causes lateral instability which is countered
by means of an anticipated postural adjustment (APA) [19], wherein
the center of pressure (COP) preemptively moves towards the swing
limb. The lateral displacement of the COP is a result of the mo-
mentary loading of the swing limb. The COG moves closer to the
base of support delineated by the stance foot. After unloading the
stance limb, the COG accelerates forward and away from the stance
limb towards the future position of the swing limb and traverses the
medial border of each support foot [40].

We account for such dynamic stability in our 2D velocity compu-
tation algorithm by restricting the movement of the center of gravity
of the articulated agent. We use the full-body motion synthesis
algorithm to determine the stance leg, St, and swing leg, Sw, of the
character at every time-step. Let Sttoe, and Swheel denote the posi-
tions of the toe joint of the stance limb, and heel joint of the swing
limb respectively. During gait initiation, as the body transitions
from double support to single support, we formulate a half-plane
constraint Hcog that limits the set of feasible landing positions of the
swing foot and prevents the COG from falling laterally which can
cause dynamic instability [19, 40]. The spatial half-plane constraint
Hcog is given as:

Hcog = {p|(p−Swheel).nb ≥ 0}, (5)

where nb denotes the normal to the vector Sttoe−Swheel , outward
with respect to the root position qrt .

During the gait initiation phase, this constraint limits the COG
to remain within the base of support defined by the stance limb. As



the swing limb approaches the mid swing point in the gait cycle
(Section 4.1), the constraint Hcog, by definition, relaxes uniformly
and allows the less restrictive forward movement of the COG [40].
The constraint is prevented from relaxing further during the terminal
swing phase, which allows for greater maneuverability in the agent’s
trajectory. The spatial constraint Hcog can be easily mapped to a
constraint in velocity space and is added to Cmotion to yield the set
of full body motion constraints, as shown in Figure 5.

4.3 Preferred Orientation
The 2D velocity computation algorithm sets the desired forward
facing vector fd

i for agent i as:

fd
i =


vpre f

i

‖vpre f
i ‖

, if vpre f
i

‖vpre f
i ‖

. vi
‖vi‖ ≥ 0, tstra f e

i < tstra f eLim

vi
‖vi‖ , otherwise

where vpre f
i denotes the initial preferred velocity, vi is the collision-

free velocity. This formulation yields lateral movement, also called
strafing, when fd

i .vi 6= 0. We track the contiguous time that the
agent has been strafing tstra f e

i and limit it to a predefined threshold
tstra f eLim. Finally, we set the desired orientation od

i to the angular
representation of the unit vector fd

i .

4.4 Collision-free Velocity Computation
We use reciprocal velocity obstacle [36] to formulate collision
avoidance constraints Ccollisionτ

i for the planning time τ . The in-
tersection of half-plane constraints (Ccollisionτ

i ∩Cmotion
i ), yields the

set of feasible velocities for agent i. Similar to [36], we use linear
programming to find a new collision-free 2D velocity vi from this
set that minimizes the deviation from the adapted preferred velocity
vpre f∗

i . Overall, this results in 2D trajectories that are amenable to
full body motion synthesis and plausible simulation.

5 IMPLEMENTATION AND RESULTS

We highlight the results of our approach on several challenging
benchmarks and discuss benefits over prior approaches including
ORCA [36], Powerlaw [12] and Smartbody [28].

5.1 Metrics for Trajectory Evaluation
We leverage commonly used quantitative metrics to evaluate the
trajectories generated by simulation algorithm. First, we use interval
penetration depth to measure agent-agent collisions. Second, we
compute a smoothness score for each simulation, measured by the
complement of the average acceleration over all agents and frames.
More details on these metrics are provided in the supplemental
document.

5.2 Comparisons
We have compared the performance of our approach with prior
methods. These include comparisons between BAM and prior 2D
navigation algorithms (using two-step decomposition); and compari-
son of BAM with prior coupled human-agent simulation algorithms
and systems.

Two-step Decomposition Methods: We compare BAM to prior
2D navigation methods that are based on two-step decomposition,
including a social-forces based model, Powerlaw [12], and a velocity
optimization model, ORCA [36]. The simulation time step was
consistent across all three methods and was lower than 0.03 seconds
for all benchmarks (Section 5.3). In each case, BAM results in
fewer collisions and smoother trajectories. This is due to the fact
that BAM accounts for many human motion constraints (Section 4)
in 2D velocity computation. Moreover, BAM can automatically
generate many emerging behaviors including commonly observed

emergent behaviors such as lane formations, arching at bottlenecks,
etc.

Coupled Approach: We compare our approach to Smart-
body [28], an animation system that couples a 2D steering algorithm
and a motion-blending-based technique. Smartbody prioritizes nat-
uralness of the synthesized motion and is prone to collisions in
medium to high density scenarios (Table 1). Moreover, it can lead
to noisy trajectories in dense crossings, as is evident from the results
in the supplemental document.

5.3 Benchmarks
We demonstrate the performance of our approach on five benchmark
scenarios.

Antipodal Circle: In this benchmark, 17 agents are placed on
the circumference of the circle with diametrically opposite goals Fig-
ure 1(a-b). This causes congestion at the center with a risk of head-on
collisions. Agents simulated with BAM slow down appropriately as
they approach the congested center, and smoothly navigate around
each other resulting in fewer collisions, and smoother trajectories
compared to prior techniques, as depicted in Table 1.

Crossing Flow: In this benchmark, two populations, each with
10 agents, cross each other orthogonally. Agents with BAM slow
down appropriately as they approach the congested intersection,
sidestep and find gaps to avoid each other. Thus, BAM algorithm
results in fewer collisions as compared to ORCA and Powerlaw.

Bidirectional Flow: In this benchmark, two groups of agents
approach each other at an angle of 180◦. ORCA agents abruptly
change velocities to avoid collisions leading to noisy trajectories.
BAM agents attempt to smoothly navigate past each other which
leads to slightly higher number of collisions (Table 1). Compared to
Powerlaw, both BAM and ORCA agents depict emergent behaviors
such as lane formation.

Tradeshow: We simulate a tradeshow scenario which is chal-
lenging due to the high number of obstacles and narrow passages
(Figure 1(d)). Agents can be seen smoothly avoiding collisions
with one other in the narrow passages, forming lanes and and often
sidestepping to avoid each other.

Shibuya Crossing We simulate a busy street crossing, where
agents are probabilistically assigned goal positions and must use the
pedestrian walk lanes to navigate (Figure 1(e)). Agents simulated
with BAM depict lane formation behaviors (depicted in the video).
Our algorithm can simulate and render 50 agents at approx. 50-60
fps.
5.4 Performance
We have implemented our algorithm in C++ on an desktop PC with
Intel Xeon E5-1620 v3 4-core processor, 16 GB of memory and
Windows 10 OS. BAM can generate collision-free 2D trajectories
for 100’s of agents at interactive rates (see supplemental document),
and the computation cost scales approx. linearly with the num-
ber of agents. Moreover, the full body motion synthesis system
coupled with BAM is similar in performance to other data-driven
approaches [28]. More details on the animation system are provided
in the supplemental document. Overall, we can simulate and render
60+ full-body agents at 60+ fps. Our current implementation is not
optimized and can be easily parallelized on multiple cores.
6 USER EVALUATION

We conducted a series of user evaluations to demonstrate the per-
ceptual benefits of BAM compared to prior techniques in simulating
agent-agent interactions in non-immersive settings, as well as avatar-
agent interactions in immersive settings.

6.1 Single Agent & Agent-Agent Interactions in Non-
Immersive Settings

We conducted two studies to evaluate the navigation and motion
plausibility of simulations generated using BAM. The first study



Benchmark Num. Agents Collisions Trajectory Smoothness
SB ORCA PL BAM SB ORCA PL BAM

Crossing Flow 20 0.016 0.001 0.00003 0.00006 0.911 0.894 0.881 0.876
Bidirectional Flow 14 0.0 0.003 0.007 0.001 0.739 0.776 0.792 0.826
Antipodal Circle 17 0.079 0.012 0.060 0.009 0.765 0.819 0.86 0.851

Table 1: Comparing BAM with prior algorithms: We evaluate our 2D velocity algorithm, BAM, with prior two-step decomposed methods such
as ORCA, and Powerlaw(PL), and a prior coupled method, Smartbody (SB). Both ORCA and Powerlaw are coupled with a motion blending based
synthesis and simulated at a fixed time step. We compare (a) the number of agent-agent collisions, measured using interval penetration depth
averaged over all frames and agents, and (b) the smoothness of the root joint, measured as the complement of averaged acceleration, over all
frames and agents. Our algorithm, BAM, accounts for the full body pose during 2D planning leading to fewer collisions and smoother fully body
motion. In a few cases, BAM has lower smoothness score due its prioritization of collision avoidance.

(A) (B) (C)

BAM / ORCA

BAM / Power Law

Figure 6: Participant Preferences in User Studies: (A) Participants clearly preferred our approach BAM compared to baseline methods,
ORCA [36] and Powerlaw [12], in terms of both motion plausibility and navigation in the single agent non-immersive study. Mean preferences
were 2.71, 2.75, 2.45 and 2.29 respectively where a rating of 1 indicates a strong preference for BAM, 7 indicates a strong preference for the other
method and 4 indicates no preference. (B) Preference for BAM was even stronger in the non-immersive multi-agent study. Mean preferences were
2.02, and 2.04 respectively. (C) In the immersive study, participants significantly preferred BAM on questions of awareness and avoidance on part
of the virtual agents, indicating higher co-presence. The mean preferences were (L-R) 2.44±1.59, 2.50±1.90, 2.25±1.95, and 2.44±1.46.

seeks to evaluate the movement plausibility of a single agent navi-
gating in a dense scene with dynamic obstacles whereas the second
study was designed to evaluate agent-agent interactions.

Experiment Goals & Expectations: We hypothesize that in
both studies, agents simulated with BAM will exhibit fewer oscilla-
tions, fewer collisions, smoother trajectories and overall plausible
motion and navigation behaviors compared to prior methods. There-
fore, in both cases, participants will strongly prefer our approach to
the baseline navigation algorithms.

Experimental Design: Both studies were conducted based on a
within-subjects, paired-comparison design. Participants were shown
two pre-recorded videos in a side-by-side comparison of our method
BAM and one of set of baseline navigation algorithms. The order
of scenes and the positioning of the methods was counterbalanced.
The single-agent study depicted two viewpoints for every scene
(close-up and top-down) whereas the multi-agent study depicted the
perspective of an avatar in the crowd.

Comparison Methods: The single-agent study compared our
algorithm BAM with two prior 2D navigation techniques: a velocity-
optimization method, ORCA [36], and a social forces-based method,
Powerlaw [12]. The agent-agent study compared BAM with ORCA
only. All three 2D navigation methods were coupled with a motion-
blending full-body animation approach which strictly follows the
computed 2D trajectory.

Environments Two scenarios were used for the single agent
study. Each comprised of one agent navigating to a goal in an en-
vironment with dynamic obstacles that avoided each other, but not
the full-body agent. The scenarios were the Antipodal circle with

20 obstacles, and the Crossing Flow with 8 obstacles (Section 5.3)
moving back and forth, orthogonal to the agent’s preferred direc-
tion. The multi-agent study also comprised of two scenarios, each
designed to increase the probability of agent-agent interactions. The
first scenario, Four-way crossing, comprised of 4 groups, each with 6
agents, initialized at the ends of two perpendicular narrow passages
meeting in the center. The second scenario, Dense Unidirectional
Flow, comprised of 100 agents walking in a winding corridor.

Metrics: In both studies, participants indicated their preference
for a method using a 7-point Likert scale, with 1 indicating strong
preference for the method presented on the left, 7 indicating strong
preference for the method presented on the right, and 4 indicating
no preference. Participants responded to several questions, each
representing an aspect of navigation or motion plausibility.
6.1.1 Results

The single-agent and multi-agent studies were taken by 12 and 19
participants respectively. For both studies, we tested each dimension
of our questionnaire independently for reliability using the Cron-
bach’s alpha test and and found good values, indicating that the
questions were capturing the same aspect of the simulation. More-
over, we performed one-sample t-test comparing the mean of each
dimension with a hypothetical mean of 4 (no preference) and found
that the preferences were significant in each of the two-way com-
parisons. Overall, participants showed strong preference for BAM
compared to both baseline methods on each dimension. Figure 6(A-
B) details the preference values obtained for each dimension and
comparison.

Single Agent Interactions Good reliability was determined for



the navigation dimension (α = 0.845) and the motion plausibil-
ity dimension (α = 0.857). For the ORCA comparison, our re-
sponses demonstrate significant difference from the hypothetical
mean on motion plausibility (t(11) =−8.543, p < 0.001) and nav-
igation (t(11) = −7.683, p < 0.001). The Powerlaw comparison
showed significant differences on both motion plausibility (t(11) =
−10.348, p < 0.001) and navigation (t(11) =−12.56, p < 0.001).

Multi-agent Study Acceptable reliability was determined for
the navigation dimension (α = 0.799) and the motion plausibility
dimension (α = 0.759). Both dimensions were found to be signif-
icant, navigation (t(18) = −10.715, p < 0.001) and motion plau-
sibility (t(18) = −10.364, p < 0.001). Overall, participants show
strong preference for BAM on both dimensions, 2.04± 0.77 and
2.02±0.81 respectively (Figure 6).

6.2 Multi-Agent & Avatar-Agent Interactions in Immer-
sive Settings

We evaluate the ability of our approach to simulate plausible move-
ment interactions between agents and the user’s avatar in immersive
settings. In this study, participants used an HTC Vive HMD and mo-
tion controllers and physically walked in a 3.8x3.8 m obstacle-free
space. Their physical movement was mapped to their virtual avatar
to ensure congruent proprioceptive sensations in the real and virtual
world, at least in terms of motion. They used motion controllers to
manipulate virtual objects, and were also provided haptic feedback
during collisions with agents.

Experiment Goals and Expectations: Our hypothesis was two-
fold. First, we hypothesized that that the perceived realism of agent-
agent interactions with BAM highlighted by the non-immersive
studies will stand true in immersive settings even if the user is
merely a passive observer. Second, we hypothesized that BAM will
result in more plausible avatar-agent interactions, leading to higher
co-presence. Henceforth, we refer to the former as the agent-agent
condition, and the latter as the avatar-agent condition.

Experimental Design: This study was conducted based on a
within-subjects, paired-comparison design. For each condition, par-
ticipants first interacted with two simulations back to back with a
fixed exposure time. The two simulations were generated using
BAM and one of two baseline methods, in counterbalanced order.
After these two simulations, participants answered a set of questions
before moving on to the next set of two simulations comparing BAM
with the other baseline method.

Comparison Methods: Similar to the non-immersive studies
(Section 6.1), we evaluated BAM against both baseline methods,
ORCA and Powerlaw.

Metrics: The questions were derived from commonly used pres-
ence questionnaires to address aspects of presence, co-presence,
motion and navigation plausibility. The response format was similar
to the one used in Section 6.1.

Scenarios: In the agent-agent condition, participants were asked
to be stationary and observed the Antipodal Circle from a distance.
Each method was run three times before moving onto the next
method. In the avatar-agent condition, participants were tasked with
picking a colored block and dropping it on a matching colored tile
on the virtual floor. The blocks and the matching tile were separated
by approximately 5.25 m, inducing the participant to physically walk
back and forth in the real world. The direct path of the participant
was orthogonal to a unidirectional flow, increasing the probability of
interactions with virtual agents.

6.3 Results

The immersive user-study was taken by 18 participants, 13 male,
with a mean age of 23.06±4.41 years. Analysis across dimensions
was not consistently significant across baseline methods, therefore
we reserve our discussion to 2 questions for which significance was

observed for both compared methods. For each question, a one-
sample t-test was performed against a hypothetical mean of 4 (no
preference). On the question ”In which simulation were the virtual
characters more aware of your presence?”, the comparison against
ORCA was shown to be significant (t(15) = −3.930, p < 0.001)
as well as Powerlaw (t(15) = −3.162, p = 0.006). On the ques-
tion ”In which simulation were the virtual characters avoiding you
more?” comparisons against ORCA (t(15) = −4.283, p = 0.001)
and Powerlaw (t(15) =−3.591, p = 0.003) were significant. Over-
all, participants show a strong preference for BAM on each question,
as detailed in Figure 6.

6.4 Discussion

We performed a series of studies to evaluate the benefits of BAM
under a variety of conditions. In non-immersive conditions, partici-
pants clearly preferred BAM over prior methods when evaluating
a single agent’s navigation and motion plausibility. Preference for
BAM was even stronger in the case of multi-agent interactions.

Preference for BAM was also evident in the case of avatar-agent
interactions in virtual reality. Participants reported the virtual agents
avoided them more, and felt that the agents were more aware of their
presence as compared to simulations with prior methods. These
results indicate that the underlying 2D navigation algorithm can
significantly impact the user’s experience when interacting with vir-
tual agents. This is a new finding which extends previous studies
that explore the impact of collision avoidance as a binary condi-
tion [15, 33]. While these responses were statistically significant,
responses to other questions such as naturalness of motion were not
consistently significant across the two compared baseline methods.
Similarly, responses for the agent-agent condition were also not con-
sistently significant. This can be due to a number of reasons. First,
our approach so far has been focused only on collision avoidance
which may not be the socially appropriate response in close interac-
tions. Second, we had only 18 participants and there was significant
variation in their level of prior experience with VR. Moreover, the
full-body motion generated by the coupled animiation system is
prone of artefacts such as foot-skating. The fact that we observed
significant differences consistently in the avatar-agent condition, and
not in the agent-agent condition merits further investigation. Over-
all, responses were largely in favour of our navigation algorithm as
depicted in Figure 6.

7 CONCLUSION, LIMITATIONS & FUTURE WORK

We present an interactive approach to generate plausible movement
for human-like agents. Unlike prior interactive methods that use a
two-step decomposition approach, we present a new velocity com-
putation algorithm (BAM), which takes into account human mo-
tion constraints. Our approach can be easily combined with many
interactive human motion synthesis methods. It can be easily par-
allelized on multi-core processors and is suitable for large-scale
interactive crowd simulation [22]. We have also evaluated its percep-
tual benefits by performing multiple user studies with single-agent
and multi-agent environments.

Our approach has some limitations. Given the overall goal of
interactive performance, our BAM algorithm may not be accurately
account for all human motion constraints. It may be possible to
generate more natural looking motions using data-driven or physics-
based simulation algorithms, but they tend to be more computation-
ally expensive. Moreover, the overall results depend on the choice
of the coupled motion synthesis algorithm and its ability to generate
natural looking animation.

There are many avenues for future work. Besides overcoming the
limitations, we would like to improve the fidelity as well as perfor-
mance of the human motion synthesis algorithm. It could be useful
to evaluate the benefits of the movements generated by our algorithm
in terms of realistic human perception of crowds, adding different



gestures [8, 21, 25], and also motion styles based on high level at-
tributes such as personality. Our 2D algorithm, BAM, can also be
combined with other human motion synthesis algorithms [29, 41].
We would also like to conduct additional quantitative evaluations of
the human motion, including energy usage etc. [13]. In addition, we
would like to explore the integration of more complex dynamical
stability constraints with BAM. Finally, we would like to extend our
algorithm to shared virtual environments with multiple avatars and
social VR. [22]
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