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1 INTRODUCTION

We provide additional details on prior methods, more results and
comparisons, discuss implementation details and provide statistical
analysis of the immersive user study.

2 PRIOR 2-STEP DECOMPOSITION METHODS

We compare our 2D velocity computation algorithm BAM (Section
4 in main text) to the following prior methods:

2.1 Universal Power Law
This is a social force (SF) based model that treats the crowd as a
collection of mass particles [1]. Newtonian-like physics is applied
to the system to compute the trajectories of the agents. At each time
step, the superposition of various forces are computed for each agent,
ultimately determining a feasible velocity by imparting acceleration
on the agent. The preferred velocity is converted into a driving
force. The agent avoids collisions with other agents and obstacles
through the application of repulsive forces. In contrast to prior
social-forces based methods, the authors analyze large databases of
captured pedestrian trajectories and find that the interaction energy
between two pedestrians is inversely proportional to the square of the
projected time to a potential future collision. The interaction energy
is then used to derive the repulsive force, and overall acceleration.
Our implementation is based on the publicly available source code,
available at http://motion.cs.umn.edu/PowerLaw/, and the original
values given by the authors.

2.2 ORCA
Optimal Reciprocal Collision Avoidance (ORCA) [3] applies geo-
metric optimization techniques in velocity space. It is based on the
notion of velocity obstacles from robotics. Avoiding collision simply
requires selecting a velocity which does not lie within the reciprocal
velocity obstacle set for each agent. ORCAs unique formulation
defines the velocity obstacles as half planes. The set of velocities
that are permitted for agent with respect to all other agents is the
intersection of the half planes of permitted velocities induced by
each other agent. It uses 2D linear programming to efficiently find
a velocity in the set of permitted velocities which minimizes the
distance to the preferred velocity. We use the publicly available
source code, available athttp://gamma.cs.unc.edu/ORCA/, and the
original values given by the authors.

3 ADDITIONAL RESULTS

We evaluate our 2D navigation algorithm, BAM, with prior methods
based on velocity obstacles (ORCA) and social forces (Powerlaw).
In each case, we couple the 2D planner with the same animation
system which is capable of precisely following a 2D trajectory. The
BAM algorithm accounts for the full body pose during 2D planning
leading to fewer collisions in the synthesized motion (Table 1 in
the main document). Moreover, it generates smoother trajectories
at a slightly higher run time cost. Provided here are details of the
evaluation criterion and a discussion of the results.

3.1 Agent-Agent Collision Rate Metric
We estimate the rate of agent-agent collisions by analyzing the 2D
position of the bounding disc of the underlying articulated character.
Our coupled approach ensures that the position of the disc is synchro-
nized with that of the root joint of the corresponding skeletal mesh

(Section 3.4 of the main document). Penetration Depth is a com-
mon metric used for quantifying collisions. It can be defined as the
minimum displacement required to eliminate overlap between two
entities. For each pair of adjacent time steps, we compute the maxi-
mum penetration depth (PDi j) between two agents, i and j, over the
interval bound by those time steps tk and tk+1. Assuming that agents
move linearly between time steps, the position of agent i during
the interval [tk, tk+1] can be given as pi(t) = pi +vit, tk ≤ t ≤ tk+1,
where pi and vi denote the position and velocity respectively of agent
i at time t = tk. The maximum penetration depth can be computed
by finding the minimum distance, or, equivalently, the minimum
squared distance, between the two agents, i and j, over the time
interval [tk, tk+1] as:

dmin
i j = min

0≤s≤1
‖(pi +v

′
is)− (p j +v

′
js)‖2, (1)

where v′i = (tk+1− tk)vi and s =− pi j .v
′
i j

‖pi j‖2 for relative position pi j =

pi−p j and relative velocity vi j = vi− v j. We can normalize the
maximum penetration depth over the time step as PDk

i j = max(0,1−
dmin

i j /ri j) where ri j denotes the sum of the radii of the two discs.
Finally, the collision rate C for the simulation can be computed by
averaging all frames and agents:

C =
1

T N

N

∑
t=0

N

∑
i=0

N

∑
j=i+1

PDt
i j, (2)

where N is the number of agents, and T is the number of time steps.
Table 1 in the main document presents the collision rates of the

three methods on different benchmarks (Section 7.2.1 of the main
document). The BAM algorithm accounts for the current pose of
the skeletal mesh and several human motion constraints to generate
velocities that are amenable to motion synthesis. This two-way
coupling reduces the mismatch between the 2D planning and full
body synthesis, and reduces collisions.

3.2 Trajectory Smoothness Metric
Similar to the above section, we analyze the 2D trajectory of the root
joint. Smaller accelerations are likely to generate smoother motions.
The smoothness score A is simply the average acceleration over all
the agents and all the simulation steps:

A =
1

T N

N

∑
t=0

N

∑
i=0
‖v̇t

i‖, (3)

where N is the number of agents, T is the number of time steps, and
v̇t

i denotes the acceleration of agent i at step t.
In all benchmarks, BAM generates smoother trajectories com-

pared to ORCA and SF, as indicated by the relatively low average
acceleration scores listed in Table 1 in the main document.

3.3 Comparison with Prior Coupled Approaches
We evaluated the smoothness of the trajectories generated by our
algorithm, with those generated by Smartbody on the anti-podal
circle benchmark with 17 agents. We plot these trajectories in Fig-
ure 1. The agents in our approach are able to navigate to their goals
faster with smoother trajectories. On the other hand, Smartbody
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(A) SmartBody [2] (B) BAM (Our Algorithm)

Figure 1: Trajectory Comparisons on the Antipodal circle bench-
mark. For each simulation, we visualize the root joint position of each
agent using a different color. (a) The agent trajectories generated
in Smartbody (using Steerlib) exhibit jittering and several collisions,
as indicated by the high density of trajectories at the center. (b) Our
method, BAM, results in fewer collisions and smoother trajectories.
Moreover, our agents avoid the congested center and reach their
goals faster than Smartbody.

Figure 2: Performance Graph This graph shows the performance of
our algorithm BAM on the anti-podal circle with increasing numbers
of agents. BAM can compute collision-free trajectories of hundreds of
agents at interactive rates while accounting for kinematic and dynamic
stability motion constraints. Our approach can also simulate 60+
agents at 60 fps, including full body motion synthesis and rendering.

can generate noisy trajectories with significantly higher number of
collisions. This is denoted by the jittery trajectories in the middle
region near the center of the circle in Figure 1(b). We also present
results on other benchmarks in Table 1 in the main text.

4 IMPLEMENTATION & PERFORMANCE

We have implemented our algorithm in C++ on a Windows 10 desk-
top PC. All the timing results in the paper were generated on an Intel
Xeon E5-1620 v3 with 4 cores and 16 GB of memory. We present
the timing results (Figure 2) on the anti-podal circle benchmark
where agents are placed on the circumference of the circle with
diametrically opposite goals. BAM offers comparable performance
to ORCA and can simulate 100s of 2D agents at interactive rates.
Our overall approach couples BAM with a motion synthesis system.
We can simulate 60+ full-body agents at 60+ fps which includes
BAM, motion synthesis and rendering costs.

4.1 Full-body Motion Synthesis
We couple our novel 2D velocity computation algorithm (BAM)
with a relatively simple animation system. The animation system
uses linear blending between three motion clips. The motion clips
represent the same motion, just played back at different speeds. This
type of synthesis is physically incorrect since. it does not capture
the relationship between walking speed and stride length. It can also

result in footskating artefacts. Overall, the animation system is fairly
simple but can precisely follow a synthesized 2D trajectory. When
comparing against prior 2D navigation methods, we consistently use
the same animation system. Despite the abovementioned limitations
in our full-body animation system, we find that BAM provides
quantitative and qualitative benefits over prior methods. BAM can be
easily integrated with a number of existing animation systems, each
of which may offer its own unique advantages and disadvantages.

4.2 Parallelization potential
As mentioned in Section 5.4 of the main text, our algorithm is
currently not optimized and can benefit from parallelization. We use
an agent-based velocity computation algorithm, which relies only on
the current observable state of other agents (current position, velocity,
orientation) and local environment information to independently
compute the new velocity for each agent. Thus, at every timestep
we can sync the simulation and then each agent can independently
compute new velocities in parallel and cache these velocities in
a temporary variable. Once all agents have computed their new
velocities, we can update the current velocity of each agent to be
equal to its recently computed new velocity.

5 AGENT-AGENT & AVATAR-AGENT INTERACTIONS IN IM-
MERSIVE SETTINGS

As described in Section 6.2 of the main text, the immersive study
comprised of two conditions: avatar-agent condition where
the user by means of his/her avatar can freely move around and
interact with the agents; and avatar-agent condition where
the user observes agent-agent interactions from a distance. In both
conditions the user embodies his/her avatar with a first person per-
spective rendering through the HTC Vive HMD. We now describe
the specific questions, the statistical response, and analysis for the
two questions.

5.1 Active Avatar-Agent Interactions
In this condition, the avatar can freely interact with the agents as
he/she engages in the task of moving boxes. We provide below,
the specific questions and the responses of the user. It can be seen
that responses were statistically significant and in favour of BAM
compared to both ORCA and powerlaw on the questions of ”In
which simulation did you feel the virtual characters were more
aware of your presence?” and ”In which simulation were the virtual
characters avoiding you more?”. We plot the frequency of user’s
responses for these questions in Figure 4 and Figure 3 respectively.
Each case denotes a high frequency of strong responses for BAM
i.e. a response of 1.

Statistical Results Per Question: The following are the ques-
tions asked in this condition. Each questionnaire compared our
method to one of either Powerlaw or ORCA. A rating of 1 indicates
a strong preference for BAM, 7 indicates a strong preference for the
other method and 4 indicates no preference. We provide the mean
and std deviation for each question. Moreover, questions for which
responses were statistically significant (p < 0.001) are in bold.

• In which simulation did you have a greater sense of being in
the same space as the virtual characters?

– ORCA: 3.6±1.53

– PowerLaw 3.44±1.79

• In which simulation did you respond more to the virtual char-
acters?

– ORCA: 3.88±1.82

– PowerLaw 3.88±1.78
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Figure 3: Frequency of user responses for avatar-agent interactions on the question of avoidance.: Participants responses to the question
”In which simulation were the virtual characters avoiding you more?”. A rating of 1 indicates a strong preference for BAM, 7 indicates a strong
preference for the other method and 4 indicates no preference. Participants felt that BAM agents avoided them significantly more than Powerlaw
or ORCA.

Figure 4: Frequency of user responses for avatar-agent interactions on the question of awareness. Participants responded to the question
”In which simulation did you feel the virtual characters were more aware of your presence?” A rating of 1 indicates a strong preference for BAM, 7
indicates a strong preference for the other method and 4 indicates no preference. Participants felt that BAM agents were more aware of them
compared to prior methods. This indicates that participants felt more co-presence with BAM agents.

• In which simulation did you feel the virtual characters were
more aware of your presence?

– ORCA: 2.44±1.59

– PowerLaw 2.50±1.90

• In which simulation were the virtual characters avoiding you
more?

– ORCA: 2.25±1.95

– PowerLaw 2.44±1.46

• In which simulation were the virtual characters avoiding you
more naturally?

– ORCA: 2.88±1.93

– PowerLaw 3.31±2.24

• In which simulation did the virtual characters follow more
natural paths?

– ORCA: 3.31±1.66
– PowerLaw 4.0±2.07

• In which simulation did the presence of the virtual characters
affect you more in the way you explored the space?

– ORCA: 4.25±2.21
– PowerLaw 4.56±1.97

Discussion:
It can be clearly seen that BAM outperformed Powerlaw and

ORCA in all cases where the responses were statistically significant.
The average responses were in favour of BAM but are not reliable
measures due to lack of significance. Our user study comprised of
18 subjects out of which data for 2 subjects was discarded. Thus,
we analyzed data for only 16 subjects which can potentially explain
the lack of signiciance in some of the questions. For our analysis in
Section 6.2 of the main text, we limit ourselves to two questions for
which we had statistically significant responses in both comparisons.
The frequency of user responses for these questions is also provided
in Figure 4 and Figure 3 respectively.
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5.2 Passive Observations of Agent-Agent Interactions
In this condition, the user by means of his/her avatar simply observes
multi-agent interactions from a distance. The following are the
questions asked in this condition. Each questionnaire compared our
method to one of either Powerlaw or ORCA. A rating of 1 indicates
a strong preference for BAM, 7 indicates a strong preference for the
other method and 4 indicates no preference. We provide the mean
and std deviation for each question. Moreover, questions for which
responses were statistically significant (p < 0.001) are in bold.

• In which simulation did the virtual characters exhibit fewer
collisions?

– ORCA: 3.944±1.88

– PowerLaw 2.88±1.50

• In which simulation did the virtual characters exhibit fewer
artefacts? [Artefacts include abnormal actions such as
spinnning in place, unnatural foot placement, foot ’skating’,
etc]

– ORCA: 4.69±1.45

– PowerLaw 3.56±1.46

• In which simulation did the virtual characters exhibit more
natural interactions?

– ORCA: 4.0±1.63

– PowerLaw 3.81±1.64

• In which simulation did the virtual characters follow more
natural paths?

– ORCA: 4.06±1.69

– PowerLaw 3.5±1.71

None of the questions had statistically significant responses for
both methods. Hence, this data is hard to analyze and requires more
evaluation.
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