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Abstract: We present a viscous paint model for use in an inter-
active painting system based on the well-known Stokes’ equations
for viscous flow. Our method is, to our knowledge, the first un-
conditionally stable numerical method that treats viscous fluid with
a free surface boundary. We have also developed a real-time im-
plementation of the Kubelka-Munk reflectance model for pigment
mixing, compositing and rendering entirely on graphics hardware,
using programmable fragment shading capabilities. We have in-
tegrated our paint model with a prototype painting system, which
demonstrates the model’s effectiveness in rendering viscous paint
and capturing a thick,impasto-like style of painting. Several users
have tested our prototype system and were able to start creating
original art work in an intuitive manner not possible with the exist-
ing techniques in commercial systems.

1 Introduction
For centuries, artists have used traditional media and tools to ex-
press their thoughts and feelings creatively. Recently there has been
a growing interest in non-photorealistic rendering and in simulating
artists’ traditional media and tools.

In painting, each paint medium has its own characteristics. Vis-
cous paint media, such as oils and acrylics, are popular among
artists for their versatility and ability to capture a wide range of
expressive styles. However, it is a challenge to design an interac-
tive model that correctly captures the physical behavior of viscous
paint, because of the complex underlying set of partial differential
equations that govern that motion.

With the increasing trend to use simulation techniques to au-
tomatically generate physically-based, realistic special effects, the
modeling of fluid-like behavior has recently received much atten-
tion. Most of this attention, however, has been focused on the
animation of very low-viscosity fluids such as water or air. But
many fluids that we encounter on a daily basis are of a more vis-
cous nature. Familiar examples include honey, glue, mud, ketchup,
and thick paints. A method for simulating such media interactively
must be capable of treating both the high viscosity and the complex
free-surface boundary conditions with unconditional stability.

In addition to focusing on the plausible physical behavior of
viscous paint, we are also aiming at providing an expressive vehicle
for the users tointeractivelycreate original works using computer
systems. This set of dual goals introduce strict constraints and new
challenges on the design and implementation of a computational
model for a viscous paint medium.
Main Contributions: In this paper, we present an interactive
method for modeling very viscous paint media based on a novel
stable solver for the viscous Stokes equations, particularly tailored
for use in painting simulation. The solver can compute 3D flow
throughout the fluid medium and allows realistic mixing of material
properties (e.g. pigmentation) internally. It uses a Volume-of-Fluid
(VOF) / level set technique to track the free surface and is com-
pletely stable based on our observation and user’s experiences. It
further supports an intuitive, physically-based interaction paradigm
for emulating traditional painting settings [Baxter et al. 2001].

Our main goal is to create a paint model that simulates and ren-

ders viscous paint, such as oil or acrylic paint, for interactive ap-
plications. To more accurately recreate the non-linear chromatic
behavior of real paint blending, we have also implemented color
mixing and compositing based on the Kubelka-Munk (K-M) model.
In order to achieve real-time performance, this is implemented in
graphics hardware using programmable fragment shading capabili-
ties. This approach allows for both real-time calculation of the K-M
reflectances and dynamic lighting of the paint surface which would
otherwise be difficult to attain on a desktop PC.

We have augmented a prototype painting system, which demon-
strates the capabilities of our viscous paint medium with real-time
Kubelka-Munk mixing and compositing, and several users have
created paintings using the system. By manipulating the virtual
brush naturally the user can build up layers of paint and paintings in
a thick, impasto style. The multiple layers are then rendered using
K-M optical composition on graphics hardware. Together with the
physically-based modeling of the 3D deformable brushes, our vis-
cous paint model allows the artists to express their creativity freely
and paint naturally through a more familiar 3D painting interface
than the typical 2D mouse and widgets.
Organization: The rest of the paper is organized as follows.
We provide a brief survey of related work in Sec. 2. We present
an overview of the interactive painting system and the user in-
terface in Sec. 3. We describe our method for modeling viscous
fluid in Sec. 4. Section 5 presents our real-time implementation of
Kubelka-Munk model using graphics hardware. We discuss the im-
plementation issues and demonstrate the performance of our model
in Sec. 6.

2 Previous Work
A number of researchers have investigated paint and fluid simu-
lation, and also paint rendering. We present a brief summary of
related work below.

2.1 Fluid and Paint Simulation

[Kass and Miller 1990] used the linearized shallow-water equations
to simulate surface waves. The method is fast, stable and interac-
tive, but cannot handle viscous flow, and only simulates the surface
height. Internal flow is not computed. [O’Brien and Hodgins 1995]
combined a particle system with shallow-water equations to simu-
late splashing of low viscosity fluid.

[Chen and Lobo 1995] used 2D Navier-Stokes equations, taking
the pressure to be proportional to height to get the third dimension.
The method is interactive though the physical justification for inter-
preting pressure as height is questionable. Also, since the method
is fundamentally 2D, the internal flow and mixing are unknown.

[Foster and Metaxas 1996] used an explicit marker-and-cell
(MAC) method based on [Harlow and Welch 1965] to simulate
low viscosity free-surface liquid. Being an explicit method, it
was subject to the so-called CFL and viscosity timestep restrictions
(∆t < O(∆x), and∆t < O(∆x2), respectively), making it un-
suitable for use in interactive applications.

[Stam 1999] introduced the first unconditionally stable solver
for the Navier-Stokes equations to the graphics community. The



Figure 1:System Architecture

solver’s use of implicit backwards-Euler integration for viscosity
allows for high viscosity fluids, but the method does not address
the complications or stability issues introduced by the presence of
a free surface boundary condition.

Recently, [Foster and Fedkiw 2001; Enright et al. 2002] pre-
sented convincingly accurate particle level set methods for low-
viscosity free surface flow, but these methods are quite computa-
tionally intensive, requiring minutes per frame for simulation.

[Carlson et al. 2002] presented simulations of melting and flow-
ing of high-viscosity fluids based on the MAC method. While their
method treats viscosity implicitly, advection is still performed ex-
plicitly, making it subject to the CFL timestep restriction. Also their
method for handling the free surface boundary conditions is not
clear and likely subject to a timestep restriction. [X. Wei and Kauf-
man 2003] and [Cockshott et al. 1992] present cellular-automata
models for viscous fluid and paint, respectively, which are inter-
active, but neither is based on the actual physical equations that
describe viscous fluid.

[Curtis et al. 1997] used a form of the shallow water equations
in their watercolor simulation. Their explicit formulation is subject
to timestep restrictions and is inappropriate for very viscous or very
thick layers of fluid.

2.2 Paint Rendering
Alvy Ray Smith’s original “Paint” program [Smith 1978] perhaps
offered one of the first 2D methods for simulating the look of paint-
ing. A paint rendering model that offers the look of thick, viscous
paint with bump-mapping can be found in [Cockshott et al. 1992].

[Kubelka and Munk 1931; Kubelka 1948; Kubelka 1954] pre-
sented the Kubelka-Munk (K-M) equations to accurately approxi-
mate the diffuse reflectance of pigmented materials like paint given
descriptions of their constituent pigments and their concentrations.

In computer graphics, [Hasse and Meyer 1992] demonstrated
the utility of the K-M equations for rendering and color mixing in
both interactive and offline applications, including a simple “air-
brush” painting tool. [Dorsey and Hanrahan 1996] used K-M layer
compositing to accurately model the appearance metallic patinas.
[Curtis et al. 1997] also used the K-M equations for optically com-
positing thin glazes of paint in their watercolor simulation. None
of these implementations offers the real-time rendering desired for
interactive applications.

3 Overview
In this section we give a brief overview of our painting system and
its user interface design.

3.1 System Architecture
In order to test the effectiveness of our viscous paint model, we
have created an enhanced interactive painting system based on our
previous prototype called dAb [Baxter et al. 2001]. Unlike the ear-
lier prototype system, the new dAb system allows the user to choose
between a haptic stylus or a tablet interface, either of which serves
as a physical metaphor for the virtual brush. The brush head is
modeled with a spring-mass particle system skeleton and a subdi-
vision surface. It deforms as expected upon contact with the virtual
canvas. A wide selection of common brush types is made available
to the artist.

Our novel viscous paint medium supports important new fea-
tures, such as impasto-like strokes and the ability to build up many
layers of paint, both wet and dry, gouging effects from brush marks,
per-pixel lighting effects, rendering of paint bumps, etc. The sur-
faces of the brush, palette, and canvas are coated with paint using
this model. A schematic diagram illustrating how various system
components are integrated is shown in Fig. 1.

Figure 2: A Prototype Painting System UsingPHaNTOMTM

with the Graphical User Interface, the Virtual Canvas and the
Brush Rack.

Figure 3:The Physical System Setup with a Tablet Interface.

3.2 User Interface
Our prototype paint system runs on a dual-processor PC equipped
with NVIDIA’s GeForceFX graphics card. One processor is used
for optional force display, while the other is dedicated to compute
the brush dynamics and paint transfer. The color pigment mixing,
composition and rendering takes place on the graphics hardware.
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Fig. 2 and Fig. 3 show the physical setup of our system with both
the haptic and tablet interfaces.

Unlike the previous dAb system, our new prototype system can
infer the user’s intention from the current user’s hand position. For
example, as the user moves the brush handle over the brush rack
and hovers over a particular brush type, a new brush is automati-
cally selected without the user explicitly pressing on the stylus but-
ton. As the brush moves over to the virtual palette, the palette is
automatical brought to the center of the screen to allow color pick-
ing and paint mixing. The user no longer needs to explicitly toggle
the space bar to bring it up.

We also add the ability for having unlimited numbers of undo’s
and redo’s, in addition to varying degree of quick drying, saving
and loading a clean or previously painted canvas. The implementa-
tion of undos differs from our previous dAb system, since the cur-
rent paint model allows multiple wet layers, instead of two layers,
of paint. This introduces much richer and more complex optical
effects not available with the existing paint systems.

4 Interactive Paint Simulation
In this section, we describe a physically-based paint model based
on interactive, stable viscous fluid simulation. Our numerical solver
for fluid simulation offers the following characteristics:

• Stable implicit viscosity solver;

• Hybrid linear system solver combines incomplete Cholesky
preconditioned conjugate gradient (PCG) with successive
over-relaxation (SOR).

• Stable, semi-Lagrangian update of surface and color;

• Stable treatment of the free-stress surface boundary condi-
tions;

We simulate the viscous fluid behavior using the 3D incom-
pressible Stokes equations:

∂u

∂t
= ν∇2u−∇p+ F (1)

whereu is the velocity of the fluid,ν the kinematic viscosity, andp
is the pressure.F represents externally applied forces. We assume
constant density, since most familiar viscous materials are homo-
geneous. Equation 1 is coupled with the equation of continuity,

∇ · u = 0, (2)

which enforces incompressibility and the conservation of mass.
The Stokes equation is a simplification of Navier-Stokes applicable
for highly viscous flows. The simplification arises from the obser-
vation that the contribution of the advection term which appears in
Navier-Stokes,(u · ∇)u, is negligible for viscous fluids with low
Reynolds number flows. This can be understood as the velocity
field diffusing so rapidly throughout the fluid that the fluid’s inertia
does not have time to exert influence on the flow.

4.1 Numerical Method
We use a standard staggered 3D grid as in [Harlow and Welch 1965;
Foster and Metaxas 1996; Griebel et al. 1990] and others, with the
vector components such as velocity stored on cell edges and scalar
quantities (including color channels) stored at cell centers.

The numerical method used to solve the fluid flow equations is
an operator splitting method like many previous, e.g. [Foster and
Metaxas 1996; Stam 1999; Carlson et al. 2002]. We first compute
a provisional velocity field,u∗, that captures the effect of the vis-
cous term,ν∇2u, and any externally applied body forces,F. This
step uses a stable backwards-Euler integration step. We then solve

a Poisson problem to find a pressure field,p, that will makeu∗ dis-
cretely satisfy the compressibility constraint, Eq. 2. Once obtained,
the new pressure,p, is used to compute the final divergence-free
velocity field,u.

The above three-step temporal discretization scheme can be
written succinctly as follows:

u∗ = un + ∆t[ν∇2u∗ + F] (3)

∇2p = ∇ · u∗/∆t (4)

un+1 := u∗ −∆t∇p (5)

wheren refers to the time step at which the variables are to be
evaluated.

We model forces applied by the user using boundary conditions
rather than the forcing term,F, and choose to model a fluid viscous
enough that gravity is not a significant influence. Thus, we typically
setF to zero. For less viscous fluid where advection is important,
the first step (Eq. 3 can be preceded by a velocity self-advection
step as in [Stam 1999].

To model and track the evolution of the free surface – the inter-
face between the fluid and air – we use a Volume-of-Fluid (VOF)
method [Hirt and Nichols 1981] in which every cell in the computa-
tional domain is assigned a scalar value between 0 and 1 denoting
the fraction of the cell which is fluid. For the purpose of placing
boundary conditions on the simulation, a cell is treated as fluid if
its VOF value is greater than one half. The precise location of the
surface is taken to be thevof = 0.5 isosurface, though this is used
only for rendering. The method for extracting the isosurface is dis-
cussed in Sec. 4.6. Unlike previous free surface methods, each step
of our numerical method is stable, allowing us to take large time
steps and maintain interactivity.

4.2 Viscosity
As can be seen from Eq.3, we solve for the effect of viscosity us-
ing an implicit Euler update, which is unconditionally stable [Stam
1999; Carlson et al. 2002]. The spatial discretization of Eq. 3 leads
to a system of equations,Ku∗ = un,whereK = I− ν∆t∇2

D and
∇2

D is the standard 7-point Laplacian stencil in matrix form. The
system is actually three independent systems of equations, one for
each velocity component,u∗, v∗, andw∗. Expanding the compact
matrix notation above out into its constituent linear equations, the
system of equations for theu∗ component is:

Kcu
∗
i,j,k +Kx(u∗i−1,j,k + u∗i+1,j,k)

+Ky(u∗i,j−1,k + u∗i,j+1,k)
+Kz(u

∗
i,j,k−1 + u∗i,j,k+1) = uni,j,k

(6)

where

Kc = 1 + 2ν∆t(1/∆y2 + 1/∆x2 + 1/∆z2)
Kx = −ν∆t/∆x2

Ky = −ν∆t/∆y2

Kz = −ν∆t/∆z2

Written as a matrix,K is aD3 × D3 matrix, whereD is the
number of samples on each dimension of the 3D grid, but the matrix
is very sparse, containing onlyO(D3) non-zero entries, making
it amenable to solution with the conjugate gradient method. We
use the conjugate gradient method with an incomplete Cholesky
preconditioner. Pseudo-code algorithms for the conjugate gradient
method as well as the preconditioner can be found in [Golub and
Van Loan 1983].

The sparse matrix multiplies required by the conjugate gradient
solver can be implemented simply by applying the matrix stencil to
the grid, i.e. evaluating the right hand side of (6), at each(i, j, k)
on the domain. For example:
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for k = 0 to DEPTH
for j = 0 to HEIGHT

for i = 0 to WIDTH
if (i,j,k) in domain
then uout(i,j,k) := K_c * uin(i,j,k)

+ K_x * ( uin(i-1,j,k)+uin(i+1,j,k) )
+ K_y * ( uin(i,j-1,k)+uin(i,j+1,k) )
+ K_z * ( uin(i,j,k-1)+uin(i,j,k+1) );

would compute the productK ∗ uin. The check in line 4 to see if
the grid cell is in the domain is used when handling domains with
irregular geometry. For the implicit viscosity solver, this check is
true if the cell in question is a fluid cell.

4.3 Pressure Solver
Given the tentative velocity field,u∗, we must find a pressure field
such that the divergence ofu∗ −∆t∇p is near zero by solving the
Poisson problem (Eq. 4). For low viscosity flows, inertial forces
dominate (i.e., advection) so there is much temporal coherence in
the velocity field. Consequently, a small number of iterations of
successive overrelaxation (SOR) per timestep is sufficient to yield
realistic-looking results [Foster and Metaxas 1996]. However, in
very viscous flow, momentum spreads out quickly, creating large
accelerations and low temporal coherence. Thus it is necessary to
use more solver iterations to enforce incompressibility as viscosity
increases. After experimenting with several different schemes, we
have found a particularly effective approach to be a combination
of both conjugate gradient (CG) and SOR. Our SOR solver steps
are identical to those in [Foster and Metaxas 1996; Griebel et al.
1990]. We use between 10-15 iterations of CG with an incomplete
Cholesky preconditioner, followed by 3 or 4 iterations of SOR. The
residual after applying CG tends to have a fair amount of high fre-
quency content since CG is a “rougher” [Shewchuk 1994]. A few
iterations of SOR applied after CG is particularly effective since
SOR acts as a “smoother”. In our tests, the CG/SOR combination
was quantitatively more effective per CPU second than either tech-
nique alone. Comparisons were made by calculating convergence
ratios for each technique given the same initial conditions and di-
viding the result by the computational time required.

4.4 Boundary Conditions
Each stage of the numerical method must be coupled with appropri-
ate boundary conditions. For the diffusion step we use the no-slip
Dirichlet velocity boundary condition,u = 0, at wall boundaries,
and set the free velocities on the fluid-air interface to discretely
satisfy the continuity equation (2). We enforce the boundary con-
ditions by setting the value of “ghost cells”, which lie just outside
the domain. For Dirichlet boundary conditions the ghost values on
an edge along the interface are simply set to zero. Values just off
the interface are set so that(ughost + uneighbor)/2 = 0, as shown
in Fig. 4. For details on implementing the boundary conditions we
highly recommend [Griebel et al. 1990].

For the pressure Poisson equation, Neumann boundary condi-
tions are required,∂p/∂n = 0, wheren is the boundary normal.
These are implemented by copying the pressure value just inside
the domain to the ghost cell just outside, before every CG or SOR
iteration. Thus on the face of a boundary cell in the positivex di-
rection we have, for example,(pinside − pghost)/∆x = 0, which
is the finite difference approximation to the above boundary condi-
tion.

4.5 Interaction
Rather than adding forcing terms to the Stokes equations to imple-
ment interaction with the fluid, we can achieve greater control of
the fluid by setting Dirichlet velocity boundary conditions at the
fluid surface. The velocities of surface cells adjacent to the brush
are simply set to the brush’s velocity. This is similar to the approach
used for interaction with smoke in [Fedkiw et al. 2001].

Figure 4:Setting Pressure And Velocity Boundary Conditions.

4.6 Free Surface
Unlike previous approaches, our method for handling the free sur-
face of the fluid is stable even at high viscosity. As noted, we
represent the surface implicitly as the level set of a fluid fraction
function,f(i, j, k), with the interface defined to lie on thef = 0.5
isosurface. Insofar as we define the surface using the level set of an
implicit function, this approach is similar to that of [Foster and Fed-
kiw 2001; Enright et al. 2002], but the specific implicit functions
used are different.

For rendering, we need to compute an approximation of the iso-
surface and its normals. The VOF technique represents the true 3D
structure of the fluid; however, for use as a paint model a height
field representation is acceptable, and it is much less costly to ex-
tract. We obtain a height field from the VOF values in a straight-
forward manner by computing one height value for each column of
cells in the grid. We use a simple linear search to find the upper-
most fluid cell then interpolate to estimate the isosurface location to
sub-cell accuracy. Searches on successive columns can be greatly
accelerated by starting the search at the height computed for the
previous column.

The surface normals can be computed from the extracted height
field surface, but more accurate normals can be obtained by directly
computing the gradient of the VOF field. The normal is simply
n = ∇f/|∇f |, which can be computed with second order central
differences. The two normals computed at the cell centers closest
to the fluid surface are interpolated.

To update the surface location, we advect the VOF values using
the velocityu computed from Eqns. 3,4, and 5. The advection is
described in Sec. 4.7.

In order to maintain a well defined and continuous surface, it is
desirable to perform some additional filtering on the VOF values.
There are two competing reasons to filter: first, excessive smear-
ing of the interface introduced by advection leads to an ill-defined
surface; and, second, sharp discontinuities in the VOF values lead
to inaccurate normals. Essentially we desire the VOF field to al-
ways approximate a smoothed step function. To achieve this, we
perform curvature-driven smoothing to reduce sharp features, and
gradient-driven steepening to force flat regions towards either 0 or
1.

Mean curvature can be computed directly from the VOF values
as the divergence of the normals,κ = ∇ · n [Osher and Fedkiw
2002], which can be written:

κ = (f2
xfyy − 2fxfyfxy + f2

yfxx

+f2
xfzz − 2fxfzfxz + f2

z fxx

+f2
y fzz − 2fyfzfyz + f2

z fyy)/|∇f |3,

where subscripts denote partial derivatives. The standard dis-
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cretization of this equation using central differencing is second-
order accurate.

For smoothing, we use a seven-point blurring kernel which up-
dates each VOF value as a weighted convex combination of itself
and its six neighbors:

f ′(i,j,k) =
f(i,j,k) + cs

∑
(l,m,n)∈neighbors f(l,m,n)

1 + 6cs
,

wherecs is the smoothing amount. We have found a good choice
to becs = clamp((|κ| − 80)/100, 0, 1/6).

To repair smearing artifacts, we push VOF values toward the
extremes of 0 and 1 using a function of the form:f ′ := f +
(f − 0.5) ∗ cp. We have found a good choice for the push fac-
tor in conjunction with the above smoothing function to becp =
max((200 − |∇f |2)/2000, 0). Note that because of the choice
of thresholds, this steepening operation will only operate on the
smooth regions of the field, while the smoothing operation above
only operates on very steep regions, so that neither undoes the work
of the other.

The filtering reduces visual artifacts and serves to recreate some
of the effects of surface tension, which is not included in our formal
numerical model.

The free surface should also obey the no-stress conditions,
which state that no momentum can be transferred across the in-
terface [Hirt and Shannon 1968; Nichols and Hirt 1971; Griebel
et al. 1990]:

p− 2ν(∂un/∂n) = 0 (7)

ν(∂un/∂m+ ∂um/∂n) = 0 (8)

ν(∂un/∂b+ ∂ub/∂n) = 0 (9)

wheren,m, andb are the surface normal, tangent and binormal,
anduq is the directional derivative ofu in theq direction,∇u · q.
These terms have the effect of slowing down surface waves [Hirt
and Shannon 1968; Nichols and Hirt 1971]. This retardation of
propagation speed increases with increasing viscosity. At very high
viscosity, the free stress forces essentially damp out surface waves
instantly. If the free stress conditions are ignored, as in [Foster and
Metaxas 1996], fluids of high viscosity will move unrealistically
because the surface cells will tend to retain too much momentum.
[Hirt and Shannon 1968; Nichols and Hirt 1971] and others incor-
porated the above free stress terms by solving them for pressure
and enforcing that value as a boundary condition on the free sur-
face. However, this approach is unstable for high viscosities.

The source of the instability can be seen by writing out the
finite difference approximations for the equation above on sur-
face cell edges. For example, the typical discretization for a sur-
face cell with only one empty cell in the positivex direction is
pi,j = ν(ui,j − ui−1,j)/∆x [Griebel et al. 1990], where thep
value is located at the center of the cell and theu values are on
the right and left edges. the As viscosity,ν, becomes large, it is
clear that any small fluctuation in velocity values will be magnified
into a large positive or negative pressure boundary value. The large
pressure in turn leads to a large velocity adjustment in the next time
step, resulting in an unstable feedback loop.

Fortunately we have come upon a simple solution. Instead of
explicitly incorporating the above free-stress equations, or omitting
them entirely, we approximate their effect for very viscous fluid by
simply zeroing out the surface velocities at the end of every time
step. This is a reasonable approximation for the type of fluid we
are interested in, and it does not suffer from instability. With the
exception of this important modification, our handling of the free
surface boundary conditions is just as in [Foster and Metaxas 1996;
Griebel et al. 1990].

4.7 Scalar Advection
After solving for the velocity fieldu = (u, v, w), we advance both
the VOF values and the color values on the 3D grid using the ad-
vection equation for a scalar,s:

∂s

∂t
= −(u · ∇)s.

We advect using the stable semi-Lagrangian method presented in
[Stam 1999]. Specifically, we update the 3D scalar fields by tracing
characteristics with an Euler integration step backwards in time:

x∗ ≡ x−∆t[u(x)]

fn+1(x) = fn(x∗).

In general, the source location,x∗ = (x∗, y∗, z∗), will not lie at
the center of a cell, so the result is computed using trilinear inter-
polation of the eight nearest cells. If in backtracking we cross a
boundary, the value of the scalar at the boundary is used.

4.8 Summary of Method
Here we present a compact summary of all the steps from beginning
to end of one time step.

1. Set boundary velocities to zero (viscous stress approximation)

2. Computeu∗ from the implicit diffusion equation

3. Set pressure boundary values according to Neumann bound-
ary condition.

4. Solve pressure Poisson equation

5. Set surface boundary velocities using continuity equation

6. Advect the VOF values and color/pigments.

7. Extract surface mesh from VOF, and compute surface nor-
mals.

5 Paint Rendering
In this section, we describe our realization of the Kubelka-Munk
model for paint rendering, which uses modern graphics hardware
programmability.

5.1 Kubelka Munk Model
The Kubelka-Munk (K-M) model was developed around 1950 as
a simple way to model and predict the diffuse reflectance of pig-
mented materials, such as paint, based on the constituent pigments
and their concentrations in a neutral medium such as oil [Kubelka
1954]. The model computes reflectance,R, and transmittance,T ,
through a layer of material as a function of pigment concentrations,
c, and each pigment’s per-wavelength absorption and scattering co-
efficients,K andS.

The use of K-M equations for computer graphics has been ex-
plored by several researchers [Hasse and Meyer 1992; Dorsey and
Hanrahan 1996; Curtis et al. 1997]. These references give ample
background on the subject, so we will only cover the equations very
briefly. Our chief addition to the discussion is a realization of these
equations suitable for efficient implementation in hardware shading
languages.

Given theK andS values for a pigment at a particular wave-
length, the diffuse reflectance at that wavelength of a thick layer
which completely hides the substrate is:

R∞ = 1 +
K

S
−
√
K

S
+ 2

K

S
(10)
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For a finite layer of optical thickness,d, the reflectance and trans-
mittance are given by

R =
1

a+ b coth bSd
(11)

T =
b

a sinh bSd+ b cosh bSd
, (12)

wherea = 1 + K/S andb =
√
a2 − 1. In the limit asd → ∞

Eqn. 11 reduces to Eqn. 10, andT → 0.
If we have multiple pigments mixed together, each with their

ownK andS values and concentration by dry weightci, we can
compute theK andS of the mixture as

Kmix =
∑
i

ciKi

Smix =
∑
i

ciSi.

Finally, for two layersL1 andL2, withL2 on top ofL1, we can
compute the reflectance and transmittance of the optical composi-
tion of the layers given their individualR andT values:

R12 = R2 +
T 2

2R1

1−R1R2
(13)

T12 =
T1T2

1−R1b
R2b

(14)

Note that in generalR12 6= R21, i.e. the reflectance of the
top of a composite is different from the reflectance of the bottom.
Note also the reflectances in the denominator forT12 are bottom
reflectances. The implication is that when computing the compo-
sition of several layers, it is most efficient to compute the over-
all combination from the bottom up, starting with the canvas re-
flectanceR0. In this way, one avoids not only the cost of evaluating
Eqn. 14 sinceT01...N is always zero, but also avoids having to com-
pute the reverse reflectances of composites that would be required
by Eqn. 14.

5.2 Hardware Implementation
For efficient hardware implementation, first we have started by lim-
iting the number of pigments to either four or eight in our prototype,
so that the pigment concentrations can be stored in one or two stan-
dard four-component RGBA textures. From these four or eight pig-
ments, any arbitrary mixture can be made. If the initial primary pig-
ments are widely separated in the colorspace, a large gamut of col-
ors can be generated. In fact, the number of pigments and pigment
textures is not the computational bottleneck in the hardware shader,
so it is quite possible to expand the number of primary pigments
somewhat beyond eight, with negligible performance penalty. The
bottleneck lies more in the software which must perform advection
on every pigment channel.

We useK and S values computed at the RGB color wave-
lengths typically used in graphics, just as in [Curtis et al. 1997],
and have used a similar method to the one presented there to derive
appropriate values forK andS.

We have implemented two different approaches to shading with
K-M on hardware, a “thicker” style and a “thinner” style. The for-
mer makes the assumption that the transmittance of the paint is very
low and thus the pigments at the surface completely hide the under-
layers, allowing us to use theR∞ reflectance. For this we need
to compute an interpolated value for pigment concentrations at the
surface location. We do this on a column-by-column basis as we
perform the isosurface extraction.

The second rendering method composites the color of each
layer of cells in the voxel grid using Eqn. 13. This requires a sepa-
rate pass of the shader for each layer. After theN th pass, the frame

buffer holds the composited reflectance of the bottomN layers,
and this reflectance is copied to a texture to use as the input base
reflectance for passN + 1.

After computing the RGB diffuse reflectance of the pigment
mixture at each texel with the K-M equations, we complete the
shading with a standard ambient-diffuse-specular light model. We
use the surface normals computed in software from the VOF values
to render the surface with bump mapping. The canvas and paint
reflectance texture is also texture-mapped onto a quad to fill the
screen.

In our prototype we have used a voxel grid with 16 layers. To
render the composite of all these layers is quite expensive, even
with a hardware shading language. To improve the performance we
typically window the computation to only perform the K-M shading
pass on portions of the canvas which have been modified. Once
computed, we can cache and reuse the total reflectance values for
most of the canvas each frame.

5.3 Paint Transfer
For depositing paint on the canvas using the brush, we have im-
plemented some simple heuristics similar to those used in [Baxter
et al. 2001]. We use the same surface mesh-based brush model as
well, but at the beginning of each time step the brush mesh is raster-
ized onto the voxel grid and brush voxels tagged as wall boundaries
which have their velocities set to the brush velocity, as discussed in
Sec. 3.4.

For simplicity, in the current system the brush is assumed to
have only a single color, but that color is continually blended with
the color of the paint it touches to allow the brush to “pick up”
paint from the canvas. The amount of color change depends on the
number and the color of voxels of paint in contact with the brush.

The brush color is used to update the color of any voxels it
comes in contact with, and the VOF values of cells adjacent to the
brush are pushed towards 1, so as to have the effect of depositing
paint volume on the surface. Additionally, during advection of the
VOF and color fields, a color being advected from a cell with near-
zero VOF is taken to have the brush color.

6 Results

Figure 5: Thick painting strokes created with our viscous paint
model.

We have implemented our viscous paint model on a 2.5GHz
Pentium IV machine. Please see the accompanying video for
demonstrations of interaction with the paint model. When used
for two-dimensional flow, our viscous free surface simulation runs
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Figure 6:An image hand-painted using our paint model.

at 64 × 64 resolution at over 70 frames per second with rendering
of tracer particles. In three dimensions we can compute the flow
on a32× 32× 16 grid at 20 frames per second. Since the method
is stable, the time step does not need to be reduced even when the
fluid undergoes rapid motion. In contrast, a simulation restricted by
the CFL or viscosity timestep conditions would not be able to keep
the simulation synchronized with wall clock time, since it would
have to take many smaller substeps when fluid velocity is large.

We have integrated our paint model with a prototype painting
system to simulate an oil-paint-like medium. We provide the user
with a large canvas, then window the fluid simulation to calculate
flow only in the immediate vicinity of the brush. This optimization
is reasonable since a very viscous paint medium essentially only
moves in regions in which it is agitated. We render the results by
extracting a height field and normal map from the paint fluid as de-
scribed in Section 4.6. For the rendering we have implemented the
Kubelka-Munk reflectance model [Kubelka 1954] using fragment
programs on an NVIDIA GeForceFX graphics board. This gives
the paint medium more realistic color mixing than is obtained from
simple additive RGB blending [Hasse and Meyer 1992; Curtis et al.
1997].

Fig. 5 shows an example of the type of effect produced by our
fluid model. Several images created by the users of our prototype
painting system are shown in Figs. 6-9. The abstract expressionist
painter in particular was fond of the paint model we have intro-
duced. Notice the impasto style of the painting in Fig. 9. The ef-
fects were created directly by the painter without any special image
processing. He also commented on the ease with which he was able
obtain a sense of depth in the paint and how this differered from the
commercial applications he has used. Most of the paintings were
created by amateur artists within a couple of hours, without much
training or elaborate instruction. The footage in the supplemen-
tary video demonstrates the interactive performance of our solver
and the stable behavior of the viscous fluid generated by our paint
model.

7 Summary and Conclusion
In this paper, we presented a novel viscous paint model for inter-
active applications. The main characteristics of our viscous paint
model include:

• An interactive viscous fluid model that captures the dynamic
behavior of impasto-like thick paint;

• Real-time color pigment mixing and compositing based on
the diffuse reflectance model described by Kubelka and
Munk;

Figure 7:An image hand-painted using our paint model.

• Seamless integration with an interactive painting system us-
ing an improved user interface and new, volumetric paint rep-
resentation.

In the future we are interested in investigating fast methods
for accurately enforcing conservation of volume, which the current
model does not do. Further work is also necessary to more accu-
rately model the fluid-surface interface, especially in the case of a
porous surface like canvas. Finally, the current model’s relatively
coarse resolution makes it unsuitable for very thin layers of mate-
rial. We believe there is potential to combine our model with 2D
methods to more accurately simulate of a wider variety of media.
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