Menge Plugin Examples
A Collection of Example Plugins for the Menge Framework
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Classes | Functions | Variables
GCF Namespace Reference

Contains the specification of the generalized centrifugal force pedestrian model. More...

Classes

class  Agent
 The specification of the generalized centrifugal force model agent. More...
 
class  AgentInitializer
 Class which determines the agent properties for each new GCF agent. More...
 
class  DBEntry
 The simulator database entry for the GCF simulator. More...
 
class  Ellipse
 Definition of an ellipse. More...
 
class  GCFSimSystem
 The SimSystem that uses the GCF agent. More...
 
class  GCFVisAgent
 The visualization agent for GCF. More...
 
class  Simulator
 Defines the simulator operating on a GCF::Agent. More...
 

Functions

std::complex< float > c_cbrt (std::complex< float > x)
 Compute the cube root of a complex number. More...
 
float hermite_interp (float t, float x1, float x2, float y1, float y2, float dy1, float dy2)
 Compute the hermite interpolation between two values. More...
 

Variables

const float A_MIN = 0.18f
 The default ellipse depth (in the facing direction).
 
const float A_RATE = 0.53f
 The default rate at which the ellipse depth grows w.r.t. speed.
 
const float B_MAX = 0.25f
 The default maximum ellipse width.
 
const float B_GROWTH = 0.05f
 The default rate at which the ellipse width changes.
 

Detailed Description

Contains the specification of the generalized centrifugal force pedestrian model.

Function Documentation

std::complex<float> GCF::c_cbrt ( std::complex< float >  x)

Compute the cube root of a complex number.

Parameters
xThe complex number whose cube root is to be taken.
Returns
The complex cuberoot of x.
float GCF::hermite_interp ( float  t,
float  x1,
float  x2,
float  y1,
float  y2,
float  dy1,
float  dy2 
)

Compute the hermite interpolation between two values.

This performs a hermite approximation of a function f. The approximation is a fourth-order (third degree) approximation derived from the values:

  • y1 = f(x1)
  • dy1 = f'(x1)
  • y2 = f(x2)
  • dy2 = f'(x2)
Parameters
tThe interpolant (lies in the range [0, 1].
x1The first x-value.
x2The second x-value.
y1The first y-value (i.e., f(x1)).
y2The second y-value (i.e., f(x2)).
dy1The first derivative value (i.e., f'(x1)).
dy2The second derivative value (i.e., f'(x2)).
Returns
The approximate value of the function.